Ch 4 Day 11 Notes

4.4 - F(X) NOTATION

OBJECTIVES:

1) Find the sum, difference, product, and quotient of functions.

1) h(2) = 4

- 2) Find the value of a function for a given value of x.
- 3) Find the composition of functions.

EVALUATING FUNCTIONS WITH A GRAPH

WITHOUT A GRAPH

Use the graphs above to compute the following:

1)
$$h(2) = 4$$

 $(2_{1}4)$
3) $\frac{g(0)}{h(2)} = \frac{-6}{4} = \frac{-3}{2}$
 $(2_{1}-10)$
4) $h(g(-3))$
 $g(-3) = 0$ so fund $h(0)$.
 $h(0) = 0$
 $h(g(-3)) = 0$

REMEMBER! f(x) is not "f times x"!

f(x) =

Let $f(x) = -x^3 + 2x^2$ and g(x) = -6x - 2. Evaluate the following:

7) $\frac{f(-1)}{g(1)} = \begin{bmatrix} 3 \\ -9 \end{bmatrix}$ 5) f(2)6) g(-3) $f(2) = -(2)^3 + 2(2)^2$ g(-3)=-6(-3)-2 = 18-2 $f(-1) = -(-1)^{3} + 2(-1)^{2}$ = 1+2 = 3 $g(-1) = -6(-1)^{2} = -8$ = - 8+8 F(2)=0 =16

COMPOSITION: Use the "f of	output from one fi g of x"	unction as the input for ar "g of	nother. f f of x"	
$(f \circ g)(x) = f(g(x))$		$(g \circ f)(x) = g(f(x))$		
To simplify: 1) Plug x 2) Use th If $f(x) = 3x^2$ and $g(x)$	into g. e result from step 1 x) = 2x - 1, find:	in f.		
12) $(f \circ g)(3) = f$ $f(3) = 2(3) - 1 \qquad f$ = 5 f(g(3)) = 7	(g(3)) 13) $(5)=3(r)^2$ =3(25) =75 75	$(g \circ f)(3) = g(f(3))$ $f(3) = 3(3)^{2} = 27$ g(27) = 2(27) = - = 54 - 1 = 53 g(f(3)) = 53	14) $(f \circ f)(3)$ f(3) = 2(3) f(3) = 2(3) f	f(f(3)) = f(f(3)) $f(27) = 3(27)^{2}$ = 3(A big = 1) = 3(
15) $(f \circ g)(x) = f(x)$ $f(x) = 3x^{2}$ f(g(x)) = 3(2x-1) $= 3(4x^{2} - 1)$ $f(g(x)) = (2x^{2} - 1)$	g(v)) 2 4x +1) 2x + 3	16) $(g \circ f)(x)$ g(x) = 2x - 1 $g(F(x)) = 2(3x^{2})$ $g(F(x)) = 6x^{2} - 1$	-1 1	= 2187 f(f(3))=2187

If
$$f(x) = x - 1$$
 and $g(x) = x^2 - 3x + 1$, find:
17) $(g \circ f)(x)$
 $g(x) = x^2 - 3x + 1$
 $g(F(x)) = (x - 1)^2 - 3(x - 1) + 1$
 $= x^2 - 2x + 1 - 3x + 3 + 1$
 $g(F(x)) = x^2 - 5x + 5$

18) $(f \circ g)(x)$ f(x) = x - 1 $f(g(x)) = x^2 - 3x + 1 - 1$ $f(g(x)) = x^2 - 3x$

YOU TRY!

1) Find (f + g)(x) and (f - g)(x), when $f(x) = 3x^3 - 2x^2 + 5x - 1$, $g(x) = x^2 + 7x - 1$. Simplify your answer. $(f + g)(x) = 3x^3 - 2x^2 + 5x - 1 + (x^2 + 7x - 1) +$

2) Find $(f \cdot g)(x)$, when f(x) = -x + 2, g(x) = x + 1. Simplify your answer.

$$(f \cdot g)(x) = (-x+2)(x+1)$$

= $-x^2 - x+2x+2$
= $[-x^2 + x + 2]$

3) Find
$$\left(\frac{f}{g}\right)(x)$$
, when $f(x) = 6x^{\frac{7}{3}}$, $g(x) = 3x^{\frac{2}{3}}$. Simplify your answer. HINT: $\frac{12x^9}{6x^6} = 2x^3$
 $\left(\frac{f}{g}\right)(x) = \frac{6x^{\frac{7}{3}}}{3x^{\frac{2}{3}}} = \left(\frac{2x^{\frac{5}{3}}}{3x^{\frac{2}{3}}}\right)$ (just subtract the exponents)

4) Let
$$f(x) = 2x^{2} - 3$$
 and $g(x) = -6x + 2$
a. $f(g(x))$ b. $g(f(x))$ c. $f(f(x))$ d. $g(f(1))$
 $f(x) = 2x^{2} - 3$ $g(x) = -6x + 2$ $f(x) = 2x^{2} - 3$ $f(1) = 2(1)^{2} - 3$
 $f(g(x)) = 2(-6x + 2)^{2} - 3$ $g(f(x)) = -6(2x^{2} - 3) + 2$ $f(f(x)) = 2(2x^{2} - 3)^{2} - 3$ $= -1$
 $= -12x^{2} + 18 + 2$ $= 2(4x^{4} - 12x^{2} + 9) - 3$ $g(-1) = -6(-1) + 2$
 $= -12x^{2} + 18 + 2$ $= 2(4x^{4} - 12x^{2} + 9) - 3$ $g(-1) = -6(-1) + 2$
 $= -12x^{2} + 18 + 2$ $= 8x^{4} - 24x^{2} + 18 - 3$ $= 6 + 2$
 $= 8x^{4} - 24x^{2} + 18 - 3$ $= 6 + 2$
 $= 8x^{4} - 24x^{2} + 18 - 3$ $= 6 + 2$
 $= 8x^{4} - 24x^{2} + 15$ $g(f(1)) = 8$

Check with the key! You'll have a video quiz check on one of these types of problems tomorrow!