480/81 Day 13 Notes

6.12 INVERSE FUNCTIONS

OBJECTIVES:

- 1) Use the definition of inverse functions to determine if a function is an inverse of another.
- 2) Find the inverse of a function.

WARM-UP REVIEW

1. Sketch the graph of $y = \log_2 x$. $2^{\gamma} = x$

- x-int: (1, 0) y-int: DNE
- Domain: 🗙 > 🔿 Range: 🦳

Asymptote: $\chi = O$

2. On the same grid, graph $y = 2^x$.

x	У	
-2	4	
-1	12	
0	N.	
t	2	
2	4	
x-int: DNE		y-int: (_O , ۱)
Domain: 🥂		Range: Y >O

How are the two graphs related, similar, and different? * Watch the video!

Asymptote: $\gamma = O$

INVERSES:

A function must be 1 to 1 in order for it to have an inverse function.

f'(x) is not a function ! f(x) is not 1-1

GRAPHING INVERSE FUNCTIONS:

Graph the function and its inverse.

3) f(x) = 3x

4)
$$f(x) = \sqrt{x}$$

DEFINITION OF INVERSE FUNCTIONS:

Two functions f and g are inverses of one another if and only if: f(g(x)) = x and g(f(x)) = x

- 5) Determine if the following are inverses of one another.
- a) $f(x) = \frac{1}{2}x 4$ and g(x) = 2x + 8 f(g(x)) = x f(g(x)) = x $f(g(x)) = \frac{1}{2}(2x + e) - 4$ $g(f(x)) = 2(\frac{1}{2}x - 4) + 8$ = x - 9 + 8 = x + 3 - 1 f(g(x)) = x + 4 - 4 = x f(g(x)) = x + 4 - 4 = x g(f(x)) = x + 4 - 4 = x f(g(x)) = x + 4 - 4 = xf(g(x)) = x

FINDING THE INVERSE OF A FUNCTION ALGEBRAICALLY:

1.
$$f(x) = 2x + 7$$

2. $g(x) = \frac{3}{2}x - 6$
3) $x = 2y + 7$
4) $\boxed{\begin{array}{c} \frac{x - 7}{2} = y \\ \frac{x - 7}{2} = y \end{array}}$
3. $f(x) = 5^{x}$
 $y = \frac{5^{x}}{2} = 5^{x}$
 $y = 6 + \log_{3} x$
 $y = 6 + \log_{3}$