6.12 INVERSE FUNCTIONS

OBJECTIVES:

1) Use the definition of inverse functions to determine if a function is an inverse of another.
2) Find the inverse of a function.

WARM-UP REVIEW

1. Sketch the graph of $y=\log _{2} x . \quad 2^{y}=x$

x	y
$\frac{1}{4}$	-2
$\frac{1}{2}$	-1
1	0
2	1
4	2

x-int: $(1,0) \quad y$-int: DNE.

Domain: $x>0 \quad$ Range: \mathbb{R}

Asymptote: $\quad x=0$

2. On the same grid, graph $y=2^{x}$.

x	y
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4

x-int: DNE $\quad y$-int: $(0,1)$

Domain: \mathbb{R}
Range: $y>0$
How are the two graphs related, similar, and different?

* Watch the video!

INVERSES:

A function must be 1 to 1 in order for it to have an inverse function.

$f^{-1}(x)$ is not a function!
$f(x)$ is not $1-1$

GRAPHING INVERSE FUNCTIONS:

Graph the function and its inverse.
3) $f(x)=3 x$

$f(x)$		\longrightarrow	$f^{-1}(x)$	
\mathbf{x}	\mathbf{y}		\mathbf{x}	\mathbf{y}
-2	-6		-6	-2
-1	-3		-3	-1
0	0		0	0
1	3		3	1
2	6		6	2

4) $f(x)=\sqrt{x}$

DEFINITION OF INVERSE FUNCTIONS:

Two functions f and g are inverses of one another if and only if: $f(g(x))=x$ and $g(f(x))=x$
5) Determine if the following are inverses of one another.
a) $f(x)=\frac{1}{2} x-4$ and $g(x)=2 x+8$
b) $f(x)=3 x-1$ and $g(x)=\frac{x}{3}+1$
$f(g(x))=x$
$g(f(x))=x$
$f(g(x))=\frac{1}{2}(2 x+2)-4$
$g(f(x))=2\left(\frac{1}{2} x-4\right)+8$
$f(g(x))=f\left(\frac{x}{3}+1\right)$
$=3\left(\frac{x}{3}+1\right)-1$
$=x+3-1$
$=x-8+8$
$f(g(x))=x+4-4=x$
$=x+2$
$f(g(x))=x$
$g(f(x))=x$
$f(g(x)) \neq x$ so they are not inverses.

FINDING THE INVERSE OF A FUNCTION ALGEBRAICALLY:

1. $f(x)=2 x+7$
1) $y=2 x+7$
2) $x=2 y+7$
3) $x-7=2 y$

$$
\frac{x-7}{2}=y
$$

4) $f^{-1}(x)=\frac{x-7}{2}$
3. $f(x)=5^{x}$

$$
\begin{aligned}
& y=5^{x} \\
& x=5^{y} \\
& \log _{5} x=y \\
& f^{-1}(x)=\log _{5} x
\end{aligned}
$$

2. $g(x)=\frac{3}{2} x-6$

$$
y=\frac{3}{2} x-6
$$

$$
x=\frac{3}{2} y-6
$$

$$
x+6=\frac{3}{2} y
$$

$$
\frac{2}{3}(x+6)=y
$$

$$
y=\frac{2}{3} x+4 \quad f^{-1}(x)=\frac{2}{3} x+4
$$

4. $f^{-1}(x)=6+\log _{3} x$

$$
y=6+\log _{3} x
$$

$$
x=6+\log _{3} y
$$

$$
x-6=\log _{3} y
$$

$$
3^{x-6}=y
$$

$$
f^{-1}(x)=3^{x-6}
$$

