Ch 4
Day 16

SOLVING SYSTEMS OF LINEAR INEQUALITIES

Notes
1
System of linear inequalities: 2 or more inequalities in 2 or more variables
A solution of a system of linear inequalities: any point that satisfies each inequality in the system The \qquad of the system of linear inequalities shows the feasible region
\qquad of the system.
1.) $\left\{\begin{array}{l}y<-\frac{3}{4} x-5 \\ -2 x+6 y \leq 12\end{array}\right.$.

3.) $\left\{\begin{array}{l}y \leq 3 \\ y>-\frac{1}{3} x+1 \\ 7 x+3 y \leq 21\end{array}\right.$

2.) $\left\{\begin{array}{l}\frac{x}{4}+\frac{y}{2} \leq 2 \\ -\frac{x}{3}+\frac{y}{3}>-1\end{array}\right.$

Write a system of inequalities for the shaded region. Give two ordered pairs that ARE solutions, and two that ARE NOT solutions to the system.
1.

3.

5.) You are taking a test in which items of type A are worth 10 points and items of type B are worth 15 points. It takes 3 minutes for each item of type A and 6 minutes for each item of type B. The total time allowed is 60 minutes, and you may answer more than 16 questions.
a.) Define the variables and write a system of linear inequalities. $x=\#$ of type $A Q_{s}$ $y=\#$ of type $B Q_{s} \quad\left\{\begin{array}{l}x+y \leq 16 \\ 3 x+6 y \leq 60\end{array}\right.$
b.) Graph your solution on the provided grid.
c.) State three combinations of A and B questions that would comply with the above constraints.

Any point that lies ufin the feasible region, or on the boundary lines.

