7.11 NOTES - VARIATION FUNCTIONS

OBJECTIVES:

1) Write general equations for direct and inverse variation functions.

VOCABULARY: DIRECT VARIATION: y varies directly with x if there is some nonzero constant k such that:		3ULARY: y va some	INVERSE VARIATION: y varies inversely with x if there is some nonzero constant k such that		
y = kx (k is called the constant of variation "More education gets more income."			h) $xy = k \text{ or } y = \frac{k}{x}$ "The larger a car's engine, the lower a car's gas mileage."		
 Write general equations from 1. y varies directly with 2. y varies inversely with 3. y varies directly with 4. y varies inversely with 	om the given inform x. y = ICx h the square of x. the cube root of x. h seventh power of	ation. $y = \underbrace{k}_{x_{1}}$ $y = k \sqrt{x}$ $x_{2} = \underbrace{k}_{x_{2}}$	Do you notice the difference between directly and inversely		
AULTIPLY-MULITPLY PROPER For variation functions, nultiplying x by a constant nultiplies y by a constant.	TY OF VARIATION FU Example: $y = 2x^3$ $\frac{x y}{2 16}$	INCTIONS: y = 3 $\frac{x}{1}$	$3x^{4} \qquad y = \frac{2}{x^{2}}$ $\frac{y}{3} \qquad \frac{x}{1} \frac{y}{2}$		
Examples:	4 128 8 1024	2 4	$\begin{array}{cccc} 48 & 3 & \frac{2}{9} \\ 768 & 9 & \frac{2}{81} \end{array}$		
 Given the points: (8, 3 a. Name the type 	of function.	$(33\frac{1}{3})$			
b. What is the ger Y c. Find the particu (8,300)	eral equation of this f $= \frac{k}{x}$ ilar equation of the fu $\gamma = \frac{2400}{x}$	unction? nction.			
d. If $x = 36$, what	is y?	e. If $y = 2$	35, what is x?		

$$y = \frac{2400}{36} = \frac{200}{3}$$

 $235 = 2400 \\ \times \\ \times = \frac{2400}{235} = \boxed{\frac{480}{47}}$

480/81 Notes Day 17

- 2. Given the points: (6, 3.2) (12, 12.8) and (24, 51.2)
 - a. Name the type of function and write the general equation of this function.

Direct Variation: y= kx²

b. Find the particular equation of the function.

3. The distance an object falls from rest varies directly with the square of the time it falls (ignoring air resistance). If a ball falls 144 feet in three seconds, how far will the ball fall in seven seconds?

(3,144)	Y= Kx2	144= K·32	y= 16x2	x=7
		k=16		11 72 724 84
				y= 16. 1 = 18477

- 4. Bomb Blast Problem—The radiation dose you receive from a nuclear bomb blast is inversely proportional to the square of your distance from "ground zero" where the bomb goes off.
 - a. Write the particular equation expressing dose in terms of distance if, at 3 km, the dose is 400 units. Don't forget to define your variables!

c. If the lethal dose is 1000 units, how far must you be from ground zero in order to survive?

$$\frac{1000 = \frac{3600}{x^2}}{x^2 = \frac{3600}{1000}} = x = \pm \sqrt{3.6} \quad x \approx 1.9 \text{ km away!}$$