RATIONAL FUNCTIONS

4.7 Day 1

FINDING VERTICAL ASYMPTOTES:

To find the vertical asymptotes, set the denominator equal to 0 and solve for x. There may be more than one!

1)
$$y = \frac{x-3}{x^2-9}$$
 $\frac{(x-3)}{(x+3)(x+3)}$
 $VA: x=-3$ (Hole at x=3)
2) $y = \frac{x^2-4}{x^2+4x-5}$
Factor: $\frac{(x+2)(x-2)}{(x+5)(x-1)}$
2) $Y = \frac{x^2-4}{x^2+4x-5}$
Factor: $\frac{(x+2)(x-2)}{(x+5)(x-1)}$
3 branches

3)
$$y = \frac{x^2}{x+2}$$

 $VA: x = -2$
2 branches
4) $y = \frac{1}{x^2+2}$ no vertical asymptotes!
Denom can never = 0
| branch

HOW MANY BRANCHES WOULD EACH GRAPH HAVE?

Notes

FINDING HORIZONTAL ASYMPTOTE

To find the horizontal asymptote, compare the degree of the numerator(n) to the degree of the denominator(d).

There are three different cases:

CASE 1: n > d1) $f(x) = \frac{-3x^3 + x - 1}{x - 2}$

No horizontal asymptote!

(The maximum number of horizontal asymptotes is one.)

$$\begin{array}{c} \textbf{CASE 2:} \quad n = d \\ 2) \quad f(x) = \frac{4x^2 + 1}{x^2 - 7} \\ y = \frac{\text{lead coefficient of numerator}}{\text{lead coefficient of denominator}} \\ y=0 \end{array}$$

SOME RHYMES TO HELP YOU REMEMBER: (They are terrible, I know.)

1) "IF YOU BIG ON TOP, JUST STOP!" (CUZ THEY AIN'T NO HORIZONTAL ASYMPTOTE)

- 2) Got nothin' for this one. Ain't nobody got time for that.
- 3) "IF THE BOTTOM IS HEAVY, THE LINE IS STEADY (AT Y = 0)".

Graph the following rational functions:

TRY NUMBERS 8 AND 9 ON YOUR OWN AND CHECK WITH THE KEY! I'LL GO OVER THESE WITH YOU TOMORROW IF YOU STILL HAVE QUESTIONS.

y=1

- $f(x) = \frac{x-4}{x+2}$

 $9) \quad f(x) = \frac{3}{x^2 + 2}$

VA: none

$$HA: y=0$$

 $x int: none$
 $y int: (0, 3z)$
 cz