7.9 NOTES - GRAPHING RATIONAL FUNCTIONS

OBJECTIVES:

1) Determine vertical and horizontal asymptotes and x and y intercepts to graph rational functions.

RATIONAL FUNCTIONS:

A rational function is a function of the form $y=\frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are polynomials.

A rational function can have both vertical
AND horizontal asymptotes.
A rational function has branches - one more branch
 than the number of vertical asymptotes.

Graph above: one vertical asymp. and 2 branches

FINDING VERTICAL ASY MPTOTES:

To find the vertical asymptotes, set the denominator equal to 0 and solve for x. There may be more than one!

1) $y=\frac{x-3}{x^{2}-9} \quad y=x+3$

$$
\begin{aligned}
& (x+3)(x-3) \\
& x=-3 \quad x=\beta \quad 2 \text { branches }
\end{aligned}
$$

2) $y=\frac{x^{2}-4}{x^{2}+4 x-5}$
$y=\frac{(x+2)(x-2)}{(x+5)(x-1)}$

$$
x=-5 \quad x=1
$$

3 branches
3) $y=\frac{x^{2}}{x+2}$

$$
x=-2
$$

4) $y=\frac{1}{x^{2}+2}$

$$
x^{2}+2=0
$$

NO VERTICAL ASYMPTUTES?

FINDING HORIZONTAL ASYMPTOTES:

To find the horizontal asymptote, compare the degree of the numerator(n) to the degree of the denominator(d).
There are three different cases:
(The maximum number of horizontal asymptotes is one.)

1) If $n>d \longrightarrow$ No horizontal asymptote!
Ex. $f(x)=\frac{-3 x^{3}+x-1}{x-2}$

If the degree of the numerator is GREATER than the degree of the denominator, there is no horizontal asymptote.
2) If $n=d$
$\longrightarrow y=\frac{\text { lead coefficient of numerator }}{\text { lead coefficient of denominator }}$
Ex. $f(x)=\frac{4 x^{2}+1}{x^{2}-7}$

If the degree of the numerator is EQUAL to the degree of the denominator, the asymptote is found by dividing the coefficients of the terms with the highest degrees.
3) If $n<d$ $y=0$
Ex. $f(x)=\frac{2 x+2}{x^{2}-3}$

If the degree of the numerator is LESS THAN the degree of the denominator, the horizontal asymptote is at $\mathrm{y}=0$.

1) "IF YOU BIG ON TOP, JUST STOP!" (CUZ THEY AIN'T NO HORIZONTAL ASYMPTOTE)
2) Got nothin' for this one. Ain't nobody got time for that.
3) "IF THE BOTTOM IS HEAVY, THE LINE IS STEADY (AT Y = O)".

AN EXAMPLE OF A RATIONAL FUNCTION: $f(x)=\frac{x^{2}-3 x+2}{x^{2}-6 x+8}$

1) $f(x)=\frac{x^{2}-3 x+2}{x^{2}-6 x+8}=\frac{(x-2)(x-1)}{(x-2)(x-4)}$
2) $f(x)=\frac{(x-2)(x-1)}{(x-2)(x-4)}$ Hole: $x=2$. Find $f(2): f(2)=\frac{(2-1)}{(2-4)}=\frac{1}{-2}$ hOLE: $\left(2, \frac{1}{-2}\right)$
3) x - int: $0=\frac{(x-1)}{(x-4)}$
4) y-int: $y=\frac{(0-1)}{(0-4)}$
5) Factor the numerator and denom.

$$
0=(x-1)
$$

$$
y=\frac{1}{4}
$$

$x=1$
5) VA: $0=(x-4)$ (denominator $=0$)

VA: $x=4$
6) HA: Degree is same! $y=\frac{1 x^{2}}{1 x^{2}}=1$ HA: $y=1$
2) Find any holes.

Hole - occurs when factors cancel
3) Find the x-intercept(s). Let $y=0$.
4) Find the y-intercept. Let $x=0$.
5) Find all vertical asymptotes. Set denominator $=0$.
6) Find the horizontal asymptote.
7) Sketch the branches of the curve.

STEPS FOR GRAPHING:
EX 1) $f(x)=\frac{4}{x-5}$

EX 2) $f(x)=\frac{x^{2}+3 x+2}{x^{2}+x-2} \quad(x+1)(x+2)$
$(x+2)(x-1)$
holes): $\left(-2, \frac{1}{3}\right)$
x-int: $(-1,0)$
y-int: $\quad(0,-1)$
VA: $\quad x=1$
HA: $\quad y=1$

3. $f(x)=\frac{5 x-10}{x^{2}+x-6}$

$$
\frac{5(x-2)}{(x+3)(x-2)} f(x)=\frac{5}{x+3}
$$

holes): $(2,1)$
x-int: DNE
y-int: $(0,5 / 3)$
VA: $x=-3$
HA: $\quad y=0$

4. $f(x)=\frac{x^{2}+2 x-3}{x+3}$

$$
0=x-1 \quad x=1
$$

$$
\begin{aligned}
& \text { holes): }(-3,-4) \\
& x-\operatorname{int}:(1,0) \\
& y \text {-int: }(0,-1)
\end{aligned}
$$

VA: DNE
HA: DNE

