

SOLVE LINEAR SYSTEMS BY SUBSTITUTION AND ELIMINATION

Name _	KEY	_
Per	Date	-

A SYSTEM OF EQUATIONS:

Definition: A system of equations is a **collection of two or more equations with a same set of unknowns**. In solving a system of equations, we try to find values for each of the unknowns that will satisfy every equation in the system.

The equations in the system can be linear or non-linear. We focus on linear equations in Ch 4.

SOLVING A LINEAR SYSTEM BY SUBSTITUTION

Solve the following systems algebraically.

1)
$$\begin{bmatrix} -2x - 3y = 18 \\ 6x - 5y = 12 \\ -2x = 3y + 18 \\ x = -\frac{3}{2}y - q \\ x = -\frac{3}{2}$$

SOLVING A LINEAR SYSTEM BY ELIMINATION

Solve the following systems algebraically. Start off easy:

1)
$$\begin{cases} -4x - 2y = -12 \\ 4x + 8y = -24 \end{cases}$$
 Add there limes to
eliminate the "x"
$$6y = -36$$

$$y = -6 \qquad y$$

Not ready for
elimination yet
(mult: boltom by 4)
$$-4x - 2(-6) = -12$$

$$-4x + 9y = 9$$

$$(-4x + 9y = 9)$$

$$(-4x + 9y = -12)$$

$$(-4x$$

3)
$$\begin{cases} (3x - 6y = 12) \\ (4x - 8y = 48) - 3 \\ 12x - 2 \\ -12x + 24y = 144 \\ 0 = -96 \\ False \\ \end{cases}$$
No solution,
parallel lines

4)
$$\begin{cases} \frac{4}{x} - \frac{3}{y} = 11 \\ \frac{5}{x} - \frac{6}{x} = 9 \end{cases} = 5 (\frac{1}{x}) - 3(\frac{1}{y}) = 11 \\ \frac{5}{x} - \frac{6}{x} = 9 \end{cases} = 5 (\frac{1}{x}) - 6(\frac{1}{y}) = 9 \\ \frac{5}{x} - \frac{6}{x} = 9 \end{cases} = 5 (\frac{1}{x}) - 6(\frac{1}{y}) = 9 \\ \frac{1}{x} = \frac{1}{y} = \frac{1}{y} = \frac{1}{y} \\ \frac{1}{y} = \frac{1}{y} \\ \frac{1}{y} = \frac{1}{y} \\ \frac{1}{y} = \frac{1}{y} = \frac{1}{y} \\ \frac{1}{y} = \frac{$$