\qquad Date \qquad

A SYSTEM OF EQUATIONS:

Definition: A system of equations is a collection of two or more equations with a same set of unknowns. In solving a system of equations, we try to find values for each of the unknowns that will satisfy every equation in the system.

The equations in the system can be linear or non-linear. We focus on linear equations in Ch 4.
$\left\{\begin{array}{l}-2 x+3 y=-6 \\ x+2 y=-5\end{array}\right.$

$$
\left\{\begin{array}{l}
-2 x+3 y=-6 \\
x^{2}+y=5
\end{array}\right.
$$

SOLVING A LINEAR SYSTEM BY SUBSTITUTION

Solve the following systems algebraically.

$$
\begin{aligned}
& \text { 1) }\left\{\begin{array}{l}
-2 x-3 y=18 \\
6 x-5 y=12
\end{array}\right. \\
& -2 x=3 y+18 \\
& x=-\frac{3}{2} y-9 \longleftarrow \operatorname{now}_{\frac{\text { substitute }}{\text { for } x}} \\
& \text { 2) }\left\{\begin{array}{l}
y=6 x-4 \\
y=-x-5
\end{array} \quad\right. \text { set equal! } \\
& \text { (substribute again) } \\
& 6 x-4=-x-5 \\
& -2 x-3\left(\frac{-33}{7}\right)=18 \\
& 7 x=-1 \\
& -2 x+\frac{99}{7}=18 \\
& 6\left(-\frac{3}{2} y-a\right)-5 y=12 \\
& -2 x=\frac{126}{7}-\frac{99}{7} \\
& \frac{-2}{-2} x=\frac{27}{7} \div-2 \text { is same as } \cdot \frac{-1}{2} \\
& x=-\frac{1}{7} \\
& \left(\frac{-1}{7}, \frac{-34}{7}\right) \\
& -9 y-54-5 y=12 \\
& -14 y=66 \\
& x=-\frac{27}{14} \\
& \text { 4) }\left\{\begin{array}{l}
3 x-6 y=12 \\
x-2 y=6
\end{array}\right. \\
& x=2 y+4 \\
& 3(2 y+4)-6 y=12 \\
& 64 y+12-6 y_{y}=12 \\
& \begin{array}{l}
12=12 \\
\text { or } \\
0=0
\end{array}>\text { True! } \begin{array}{c}
\text { Answer: } \\
0 \text { points (or ALL) } \\
\text { on the live } \\
x-2 y=4
\end{array} \\
& x=2 y+6
\end{aligned}
$$

Solve the following systems algebraically. Start off easy:

1) $\left\{\begin{array}{l}-4 x-2 y=-12 \\ 4 x+8 y=-24\end{array}\right\} \begin{aligned} & \text { Add these lines too } \\ & \text { eliminate the }\end{aligned}{ }^{\circ \prime}$

$$
6 y=-36
$$

$$
y=-6
$$

-substitute into either equation

$$
\begin{aligned}
-4 x-2(-6) & =-12 \\
-4 x+12 & =-12 \quad(6,-6) \\
-4 x & =-24 \\
x & =6
\end{aligned}
$$

3) $\left\{\begin{array}{l}(3 x-6 y=12) 4 \\ (4 x-8 y=48)-3\end{array}\right.$

$$
0=-96
$$

False!

No solution, parallel lines
2) $\left\{\begin{array}{lr}-4 x+9 y=9 \\ (x-3 y=-6) 4 & \text { Not ready for } \\ \text { elimination yet }\end{array}\right.$ (multi. bottom by ${ }^{4}$)

Solution:

$$
\begin{gathered}
-3 y=-15 \\
y=5 \\
x-3(5)=-6 \\
x-15=-6 \\
x=9
\end{gathered}
$$

4) $\left\{\begin{array}{l}\frac{4}{x}-\frac{3}{y}=11 \\ \frac{5}{x}-\frac{6}{x}=9\end{array}\right\} \begin{aligned} & 4\left(\frac{1}{x}\right)-3\left(\frac{1}{y}\right)=11 \\ & 5\left(\frac{1}{x}\right)-6\left(\frac{1}{y}\right)=9\end{aligned}$

Let $a=\frac{1}{x} \quad b=\frac{1}{y}$
New system $\left\{\begin{array}{l}(4 a-3 b=11)^{-2} \text { multiply by } \\ 5 a-6 b=9\end{array}\right.$

$$
\begin{aligned}
&-8 a+6) \\
& 75 a-6 b=-22 \\
&-3 a=-13 \\
& a=\frac{13}{3} \\
& 5\left(\frac{13}{3}\right)-6 b=9 \\
& \frac{65}{3}-6 b=9 \\
&-6 b=\frac{27}{3}-\frac{65}{3} \\
&-6 b=\frac{-38}{3} \quad \\
& b=\frac{-38}{18} \quad b=-\frac{19}{9}
\end{aligned}
$$

