OBJECTIVES: 1) Review many topics pertaining to functions.
2) Test the symmetry of functions.

## FINDING THE DOMAIN OF A FUNCTION

1) Find the domain of $\mathrm{f}: \quad f(x)=\frac{\sqrt{4+x}}{1-x}$

| $4+x$ | $\geq 0$ |
| ---: | :--- |
| $x$ | $\geq-4$ |

D: $\quad[-4,1) \cup(1, \infty)$
$x \neq 1$

COMPOSITE FUNCTIONS For every composite function $f(g(x))$ : the domain of $f(g(x))$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f .

If $f(x)=x^{2}-16$ and $g(x)=\sqrt{x}$ find:
2) $f \circ g$ and its domain.

$$
\begin{aligned}
f(g(x))= & \sqrt{x}^{2}-16 \\
= & x-16 \\
D: & \mathbb{R} ? \text { NO! } \Rightarrow \text { only } \\
& x \geq 0
\end{aligned}
$$

3) $g \circ f$ and its domain.

$$
\begin{aligned}
g(f(x))= & \sqrt{x^{2}-16} \\
& x^{2}-16 \geq 0
\end{aligned}
$$



$$
(-\infty,-4] \cup[4, \infty)
$$

## THE DIFFERENCE QUOTIENT

4) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{2}-5 x+1$.

$$
\begin{aligned}
& f(x+h)=(x+h)^{2}-5(x+h)+1 \\
& \frac{x^{2}+2 x h+h^{2}-5 x-5 h+1-(x)=x^{2}-5 x+1}{h} \\
& \frac{\left.2 x h+x^{2}-5 x+1\right)}{h}=2 x+h-5
\end{aligned}
$$

5) Find $\frac{f(x)-f(a)}{x-a}$ for $f(x)=\frac{1}{3 x}$.

$$
\frac{\frac{1}{3 x}-\frac{1}{3 a}}{x-a} \cdot \frac{3 a x}{3 a x}
$$

$$
\frac{a-x}{3 a x(x-a)}=\frac{-(x-a)}{3 a x(x-a)}=\frac{-1}{3 a x}
$$

## EVEN VS. ODD FUNCTIONS

Symmetric with respect to the $y$-axis


EVEN

Symmetric with respect to the $x$-axis


TEST: Plug in -y .

Symmetric about the origin


ODD
TEST: Plug in $-x$ and $-y$.
6) Determine the symmetry of the graph of each equation.
a. $y^{2}=x+4$
b. $y=x^{2}-2$
c. $y=x^{3}-4 x$
d. $x^{2}+y^{2}=4$

symm. w.rt. $x$-axis

sym. wr.t. $y$-axis

symm. wr.t. origin
7) Determine whether each function is even, odd, or neither.

symm. w.r.t.
$x \leqslant y$ axis
a. $y=x^{3}-4 x$
b. $y=x^{2}-2$
c. $x^{2}+y^{2}=4$
$-y=(-x)^{3}-4(-x)$
$-y=-x^{3}+4 x$
$y=x^{3}-4 x$
000
$-y=(-x)^{2}-2 \quad y=(-x)^{2}-2$
$\begin{array}{ll}-y=(-x)^{2}-2 & y=(-x)^{2}-2 \\ -y=x^{2}-2 & y=x^{2}-2\end{array}$
$y=-x^{2}+2$
EVEN!
NONE!
not
a function

## TRANSFORMATIONS

The parent function is $f(x)$ :
and origin

- The graph of $y=f(x)+k$ is shifted $\underline{\mathbf{k}}$ units upward.
- The graph of $y=f(x)-k$ is shifted $\underline{\mathbf{k}}$ units downward.
- The graph of $y=f(x+h)$ is shifted $\underline{\mathbf{h}}$ units to the left.
- The graph of $y=f(x-h)$ is shifted $\underline{\mathbf{h}}$ units to the right.
- The graph of $y=-f(x)$ is reflected over the $\mathbf{x}$-axis.
- The graph of $y=f(-x)$ is reflected over the $y$-axis.

Like the name says these functions are graphed in pieces or in parts.
8) Graph $g(x)=\left\{\begin{array}{cc}-2 x+1, & -2 \leq x \leq 1 \\ x-3, & 1<x \leq 5\end{array}\right.$


Domain: $[-2,5] \quad$ Range: $(-2,5]$
10) Write the equation of the function.

9) Graph $f(x)= \begin{cases}-x, & x<0 \\ x^{2}, & 0 \leq x \leq 2 \\ 4, & x>2\end{cases}$


Domain: $(-\infty, \infty)$ Range: $(-\infty, 4]$
11) Write the equation of the function.


## THE GREATEST INTEGER FUNCTION

(Also called the Floor Function or the Step Function.)


