Day 1 Review

BC CALC: DAY 1 REVIEW OF FUNCTIONS

OBJECTIVES: 1) Review many topics pertaining to functions.

2) Test the symmetry of functions.

COMPOSITE FUNCTIONS For every composite function f(g(x)): the domain of f(g(x)) is the set of all x in the domain of g such that g(x) is in the domain of f.

If
$$f(x) = x^2 - 16$$
 and $g(x) = \sqrt{x}$ find:

- 2) $f \circ g$ and its domain.
 - $f(g(x)) = \sqrt{x^{2}} 16$ = x 16 $D: \mathbb{R}? \text{ NO!} \Rightarrow only$ $\times 20$

3) $g \circ f$ and its domain.

$$g(f(x)) = \sqrt{x^{2} - 16}$$

$$x^{2} - 16 \ge 0$$

$$(x + 4)(x - 4) \ge 0$$

$$+ - + +$$

$$-4 - 4$$

THE DIFFERENCE QUOTIENT

4) Find
$$\frac{f(x+h)-f(x)}{h}$$
 for $f(x) = x^2 - 5x + 1$.
 $f(x+h) = (x+h)^2 - 5(x+h) + 1$
 $f(x) = x^2 - 5x + 1$

$$\frac{x^{2}+2xh+h^{2}-8x-5h+1-(x^{2}-8x+1)}{h}$$

$$\frac{2xh+h^{2}-5h}{h} = \boxed{2x+h-5}$$

5) Find
$$\frac{f(x) - f(a)}{x - a}$$
 for $f(x) = \frac{1}{3x}$.
 $\frac{1}{3x} - \frac{1}{3a}$.
 $\frac{3ax}{3ax}$

$$\frac{a-x}{3ax(x-a)} = \frac{-(x-a)}{3ax(x-a)} = \boxed{-1}$$

EVEN VS. ODD FUNCTIONS

Symmetric with respect to the y-axis

(x,y)

(-x,y)

Symmetric with respect to the x-axis

(x.y)

(x,-y)

Symmetric about the origin

EVEN

TEST: Plug in -y.

6) Determine the symmetry of the graph of each equation.

PIECEWISE FUNCTIONS

Like the name says these functions are graphed in pieces or in parts.

8) Graph
$$g(x) = \begin{cases} -2x+1, -2 \le x \le 1 \\ x-3, 1 < x \le 5 \end{cases}$$

10) Write the equation of the function.

11) Write the equation of the function.

y = xDomain: $(-\infty, \infty)$ Range: Integers \mathbb{Z}

(Also called the Floor Function or the Step Function.)

