\qquad
\qquad Date

AND WORD PROBLEMS!

SOLVING A LINEAR SYSTEM BY GRAPHING:

Step 1: Graph each line, using the appropriate form.
Step 2: Estimate the coordinates of the point of intersection.
Step 3: Check the coordinates algebraically.

Use the graph to solve the system. Then, check your solution algebraically.

1) $\begin{cases}2 x+7 y=7 & \bullet m=-\frac{2}{7} \\ 3 x-2 y=9 & \bullet\end{cases}$

Graphing is unreliable!
$\left.-3(2 x+7 y=7) \longrightarrow \begin{array}{rl}-6 x-21 y & =-21 \\ 2(3 x-2 y=9) & \rightarrow 2 x-4 y=18 \\ \hline-25 y & =-3\end{array}\right)$.
$4 x+14 y=14$
$21 x-14 y=63 \quad y=\frac{3}{25}$
$25 x=77$

$$
x=\frac{77}{25}>3 \frac{2}{25} \quad\left(\frac{77}{25}, \frac{3}{25}\right)
$$

2) $\left\{\begin{array}{l}y-3=-\frac{3}{5}(x+7) \\ 3 x+5 y=15\end{array}\right.$
3) $\left\{\begin{array}{l}y+5=\frac{1}{2}(x+6) \\ 4 x-8 y=16\end{array}\right.$

No solution, parallel lines.

All points ($\infty 0$ points) on the line $4 x-8 y=16$

SYSTEMS APPLICATION PROBLEMS

4) Find the value of the sum of two numbers if their sum is 2 and their difference is 4 .

$$
\text { Let } x=\text { one number } \quad\left\{\begin{array}{l}
x+y=2 \\
y=\text { other number } \\
x-y=4
\end{array}\right.
$$

5) The school that Stephen goes to is selling tickets to a choral performance. On the first day tickets sales, the school sold 3 senior citizen tickets and 1 child ticket for a total of $\$ 38$. The school took in $\$ 52$ on the second day by selling 3 senior citizen tickets and 2 child tickets. Find the price of a senior citizen ticket and the price of a child ticket.

$$
\text { Let } \begin{aligned}
x= & \text { Price for a senior citizen ticket } \\
y= & \text { Price for a child's ticket } \\
& \left\{\begin{array}{l}
3 x+1 y=38 \\
3 x+2 y=52
\end{array}\right.
\end{aligned}
$$

6) Two angles are supplementary. The larger angle is 48 degrees more than 10 times the smaller angle. Find the measure of each angle.

$$
\begin{aligned}
& \text { Let } x=\text { measure of larger angle } \\
& y=\text { measure of smaller angle } \\
& \qquad\left\{\begin{array}{l}
x+y=180 \\
x=48+10 y
\end{array}\right.
\end{aligned}
$$

7) Suppose it takes a small airplane flying with a head wind 16 hours to travel 1800 miles. However, when flying with a tail wind, the airplane can travel the same distance in only 9 hours. Find the rate of speed of the wind and the air speed of the airplane

$$
\begin{aligned}
& D=R \cdot T \quad x=\text { rate of plane } y=\text { rate of wind } \\
& 1800=(x-y) 16 \quad \text { speed going against wind } \\
& 1800=(x+y) 9 \quad\left\{\begin{array}{l}
16 x-16 y=1800 \\
9 x+9 y=1800
\end{array}\right. \\
& \text { speed with wind helping }
\end{aligned}
$$

