5.2 - GRAPHING QUADRATIC FUNCTIONS

OBJECTIVES:

1) Graph quadratic functions using a table.
2) Graph quadratic functions using the vertex and symmetric points.
3) Given the vertex and point on the graph of a quadratic, find an additional point using symmetry.

METHOD \#1: GRAPHING FROM A TABLE

We already know how to do this from chapters 1 and 2 . We will have to select values of x to plug into the function, but we rnay have to try many values in order to get a good "u shape". Note - you can't mess this method up, unless you don't follow order of operations correctly!

1) $f(x)=-2 x^{2}+2$

x	$f(x)$

METHOD \#2: FINDING VERTEX AND USING SYMMETRY
2) $f(x)=x^{2}-4 x-3$

Opens:
Stretch or shrink:
Vertex: $\quad y$ int:
x int:

STANDARD FORM:

$a x^{2}+b x+c=0$

OPENS UP: OPENS DOWN:

VERTEX:

AXIS OF SYMMETRY:
3) $f(x)=-2 x^{2}+8 x-2$

Opens:

Stretch or shrink:
Vertex:
Axis of
Symmetry:
y int:
x int:

METHOD \#3: USE X-INTERCEPTS AND VERTEX

4) $f(x)=-x^{2}+2 x+3$

Opens:
Stretch or shrink:
Vertex:
Axis of
Symmetry:
y int:
x int:

USING SYMMETRY TO FIND ADDITIONAL POINTS ON A PARABOLA

1) Given that the vertex of a parabola is at $(100,300)$ and $(88,263)$ lies on the parabola, find an additional point lying on the parabola. Draw a sketch!
2) Vertex: $(-20,30)$ point: $(15,245)$
3) Vertex: $(-150,-30)$ point: $(-136,-59)$

