7.3 PASCAL'S TRIANGLE

OBJECTIVES: 1) Use Pascal's Triangle to complete binomial expansions.

BINOMIAL EXPANSIONS

Find the product.

$$
\begin{aligned}
& (a+b)^{0}=1 \\
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

PATTERNS IN EXPANSION OF $(A+B)^{N}$:

- There are $\mathrm{n}+1$ terms.
- The expansion begins with a^{n} and ends with b^{n}
- The sum of the exponents in each term is n.
- The exponents of a decrease by 1 from term to term.
- The exponents of b increase by 1 from term to term.
- When n is even, the coefficients are symmetric about the middle term.
- When n is odd. the coefficients are svmmetric about the two middle terms.

PASCAL'S TRIANGLE

11
121 $\begin{array}{llll}1 & 3 & 3 & 1\end{array}$ $\begin{array}{lllll}1 & 4 & 6 & 4 & 1\end{array}$
$\begin{array}{llllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$
$\begin{array}{lllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$

The triangle was studied by Blaise Pascal (born 1623), although it had been described centuries earlier by Chinese mathematician Yanghui (about 500 years earlier, in fact) and the Persian astronomer-poet Omar Khayyám. It is therefore known as the Yanghui triangle in China.

Expand the binomial using Pascal's Triangle.

1) $(x-2)^{4}$
2) $(3 x+2 y)^{3}$
3) $(2 x-y)^{5}$

YOU TRY! DO THIS PLEEEEEEEEEEAAAAAASE:

4) $(2 x-5)^{5}$

$$
\begin{aligned}
& 1(2 x)^{5}+5(2 x)^{4}(-5)+10(2 x)^{3}(-5)^{2}+10(2 x)^{2}(-5)^{3}+5(2 x)(-5)^{4}+1(-5)^{5} \\
& 32 x^{5}-400 x^{4}+2000 x^{3}-5000 x^{2}+6250 x-3125
\end{aligned}
$$

