480/81 Day 3 WW
\qquad
Date \qquad Period \qquad

Fill in all the information, and graph each rational function.

1) $f(x)=\frac{x^{3}+3 x^{2}-x-3}{x+1}$

$$
f(x) \frac{x^{2}(x+3)-1(x+3)}{x+1}=\frac{\left(x^{2}-1\right)(x+3)}{(x+1)}=\frac{(x+1)(x-1)(x+3)}{(x+1)}
$$

$$
f(x)=(x-1)(x+3) \quad \text { Quadratic! }
$$

$$
=x^{2}+2 x-3 \quad \text { vertex: }-\frac{b}{2 a}=\frac{-2}{2(1)}=-1
$$

holes): $(-1,-4)$
x-int: $(1,0)(-3,0)$
y-int: $\quad(0,-3)$
VA: DNE
HA: DNE

2) $f(x)=\frac{2 x^{2}-2 x-24}{x^{2}+x-12}=\frac{2\left(x^{2}-x-12\right)}{\left(x^{2}+x-12\right)}=\frac{2(x-4)(x+3)}{(x+4)(x-3)}$

$$
\begin{array}{lr}
x \text { int: } y=0 & y \text { int: } x=0 \\
0=\frac{2(x-4)(x+3)}{(x+4)(x-3)} & f(0)=\frac{2(-4)(3)}{(4)(-3)} \\
0=2(x-4)(x+3) & f(0)=2 \\
x=4,-3 &
\end{array}
$$

holes): D NE
x-int: $(4,0)(-3,0)$
y-int: $\quad(0,2)$
VA: $\quad x=-4 \quad x=3$
HA: $\quad y=2$

3) $f(x)=\frac{(x+5)^{2}(x /-1)}{(x-1)(x+2)(x-3)^{2}}$

$$
f(x)=(x+5)^{2}
$$

$$
(x+2)(x-3)^{2}
$$

hole(s): $(1,3)$
x-int: $\quad(-5,0)$
y-int: $\left(0, \frac{25}{18}\right)$
VA: $x=-2 \quad x=3$
HA: $y=0$

4) $f(x)=\frac{x^{2}+x-6}{x^{2}+5 x+6}=\frac{(x / 3)(x-2)}{(x+3)(x+2)}$

$$
f(x)=\frac{x-2}{x+2}
$$

hole(s): $(-3,5)$
x-int: $\quad(2,0)$
y-int: $(0,-1)$
VA: $\quad x=-2$
HA: $\quad y=1$

5) $f(x)=\frac{(x-1)(x \not-4)}{(x-4)(x-3)(x+2)}$

$$
f(x)=\frac{(x-1)}{(x-3)(x+2)}
$$

holes): $\left(4, \frac{1}{2}\right)$
x-int: $\quad(1,0)$
y-int: $\quad\left(0, \frac{1}{6}\right)$
VA: $\quad x=3 \quad x=-2$
HA: $\quad y=0$

6) $f(x)=\frac{(x-1)(x+3)}{(x+1)^{2}(x-3)}$
holes): DNE
x-int: $(1,0)(-3,0)$
y-int: $(0,1)$
VA: $\quad x=-1 \quad x=3$
HA: $y=0$

7. Given the sets of data below: 1) Name the type of function that best fits the data, and
2) Write the particular equation that fits the data.
A)
B)
C)
D)

(use 3 pts in $a x^{2}+b x+c=y$)
$\left[\begin{array}{cccc}1 & 1 & 1 & -2 \\ 9 & 3 & 1 & 22 \\ 25 & 5 & 1 & 2\end{array}\right] \Rightarrow\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -5\end{array}\right]$
$y=3 x^{2}-5$

$$
\begin{array}{c|c}
x & y \\
\hline+2<-8 & 13122 \\
<-6 & 1458 \\
+2<-4 & 162 \\
+2 & >\cdot \frac{1}{9} \\
+2<-2 & 18 \\
0 & 2
\end{array}
$$

Exponential:

$$
y=a(b)^{x}
$$

$$
y=2(b)^{x}
$$

$$
18=2(b)^{-2}
$$

Linear:

$$
\begin{array}{rr}
y=m x+b & b=4 \\
y=\frac{2}{3} x+4 & y=\frac{k}{x^{2}} \\
4=\frac{k}{1^{2}} \\
k=4 \\
y=\frac{4}{x^{2}}
\end{array}
$$

x	y
$\cdot 2<1$	$4>\cdot \frac{1}{4}$
$\cdot 2<4$	$17>\cdot \frac{1}{4}$

$.25^{7} \frac{1}{4}$
$\cdot 2<8$

Inverse Varation:
8. You are looking to buy a new car and decide to do some research about the depreciation of the cars. Your first choice has a purchase price of $\$ 42,000$, but its value decreases by 30% each year. Your second, more affordable but not as sporty, choice has a purchase price of $\$ 25,000$ and will only depreciate by 15% each year.
a) How much will each car be worth in 2 years? 5 years? 10 years?

$$
\begin{array}{rlrl}
y_{1}= & 42,000(1-.30)^{x} & y_{2}= & 25,000(1-.15)^{x} \\
\text { Car 1: } & \text { e } 2 \text { yrs: } \$ 20,580 & \text { car } 2: \$ 18,062.50 \\
& \text { C } 5 \text { yrs: } \$ 7,058.94 & & \$ 11,092.63 \\
& \text { © } 10 \text { yrs: } \$ 1186.40 & \$ \$.921 .86
\end{array}
$$

b) Write an equation to represent the value of each car after n years.

$$
y=42.000(.7)^{n} \quad y=25,000(.25)^{n}
$$

c) Draw a quick sketch of each equation to answer the following question.

d) How long before the cars are worth the same amount?

$$
42.000(.7)^{x}=25.000(.85)^{x} \approx 2.67 \text { yrs they are worth } \$ 16,193 \text {. }
$$

9. a. Write a general equation for: y varies inversely with the square of x.

$$
y=\frac{k}{x^{2}}
$$

b. What happens to the value of y when x is tripled, in the variation above?
y decreases by a factor of $\frac{1}{9} / y$ is multiplied by a factor of $\frac{1}{9}$
10. a. Write a general equation for: y varies directly with the cube of x.

$$
y=k x^{3}
$$

b. What happens to the value of y when x is multiplied by one-fifth, in the variation above?

$$
\begin{array}{r}
\text { y will decrease by a factor of } \frac{1}{125} / \text { y will be multiplied by a } \\
\text { factor of } \frac{1}{125}
\end{array}
$$

11. The points $(7,45)$ and $(21,5)$ fit a variation function.

a. Which kind of variation function does the data represent?

$$
.3<\begin{array}{c|c}
x & y \\
\hline 7 & 45 \\
21 & 5
\end{array}>\cdot \frac{1}{9}
$$

b. Write the particular equation for the function.

$$
\begin{array}{rlr}
y=\frac{k}{x^{2}} & 45 & =\frac{k}{49} \\
k & =2205 & y=\frac{2205}{x^{2}}
\end{array}
$$

12. The mass of an orange varies directly with the cube of its diameter. If a Florida orange has twice the diameter of a California orange and the Florida orange weighs 6 oz . How much does the California orange weigh?

$$
\begin{array}{ll}
d=\text { diameter } & \text { If } d \text { is cut in half, then mass is decreased by } \\
m=\text { mass } & \text { a factor of } \frac{1}{8} . \\
m=k \cdot d^{3} & \text { So the mass of the California orange is } \frac{1}{8} \text { times } \\
\text { smaller than the Florida orange. } \\
m=6 \cdot \frac{1}{8}=3 / 40 z .
\end{array}
$$

