\qquad SAME SLOPES!

PERPENDICULAR LINES HAVE OPPOSITE RECIPROCAL SLOPES Their PRODUCT is \qquad .

USE THE GIVEN INFO TO WRITE A LINEAR EQUATION IN THE INDICATED FORM:

1) Passes through (4, -1) and parallel to $y=-3 x+1$
use $m=-3$

$$
y+1=-3(x-4)
$$

2) Passes through ($0,-1$) and parallel to $3 x-6 y=12$

$$
\text { find } m: \begin{aligned}
-6 y & =-3 x+12 \\
y & =\frac{1}{2} x-2 \\
m & =\frac{1}{2}
\end{aligned} \quad y=\frac{1}{2} x-1
$$

3) Passes through $(1,8)$ and perpendicular to $y=\frac{3}{5} x-1$

$$
y-8=-\frac{5}{3}(x-1)
$$

$$
m=-\frac{5}{3}
$$

4) Passes through the point $(2,3)$ and perpendicular to $y=-4$

$$
x=2
$$

5) Passes through $(2,5)$ and perpendicular to the line through the points $(-2,-1)$ and $(-3,6)$ You have a point, find slope!

$$
\frac{-1-6}{-2--3}=\frac{-7}{1} \rightarrow \text { take opp recipe: } \frac{1}{7}
$$

$$
y-5=\frac{1}{7}(x-2)
$$

6) Write an equation of a line passing through ($-5,-1$) and perpendicular to $y=2 x-8$

$$
m=-\frac{1}{2} \quad p t:(-5,-1)
$$

7) Write an equation of a line passing through $(4,-6)$ and perpendicular to $4 x-5 y=12$ Find slope: $4 x-5 y=12$

$$
\begin{aligned}
&-5 y=-4 x+12 \\
& y=\frac{4}{5} x-\frac{12}{5} \\
& m=\frac{-5}{4} \quad(4,-6)
\end{aligned}
$$

8) Passes through the point $(-2,5)$ and perpendicular to the line through $(-5,7)$ and $(3,3)$ Find slope: $\frac{7-3}{-5-3}=\frac{4}{-8}=\frac{-1}{2}$

$$
y-5=2(x+2)
$$

