6.10 NOTES - SOLVING LOG EQUATIONS

OBJECTIVES:

1) Use properties of logarithms to evaluate logs, condense logs, and solve log equations.

SOLVING LOG EQUATIONS:

There are three types of logarithmic equations that you will be required to solve.

1) $\log _{b} x=\log _{b} y \quad$ Both sides of the equation have the same log base.
2) $\log =\#$
3) $\log _{b} x=\log _{a} y \quad$ Each side of the equation has a log with different bases, but one side can be evaluated.

TYPE \#1: LOG=LOG

1) $\log _{6} x=\log _{6} 3$

$$
x=3
$$

2) $\log _{3} x-4 \log _{3} 2=\log _{3} 4$
$\log _{3} \frac{x}{2^{4}}=\log _{3} 4$

$$
\begin{aligned}
& \frac{x}{16}=4 \\
& x=64
\end{aligned}
$$

3) $\log (x+4)+\log (x+6)=\log 3$

$$
\log ((x+4) \cdot(x+6))=\log 3
$$

$$
\begin{aligned}
& (x+4)(x+6)=3 \\
& x^{2}+10 x+24=3 \\
& x^{2}+10 x+21=0 \\
& (x+7)(x+3)=0 \\
& x=-x=-3
\end{aligned}
$$

TYPE \#2: LOG=\#

4) $\log _{4} x+\log _{4} 3=2$

$$
\log _{4} 3 x=2
$$

5) $3 \log _{4} 2+2 \log _{4} x=2$
$\log _{4} 2^{3} \cdot x^{2}=2$
$\log _{4} 8 x^{2}=2$
$y^{2}=8 x^{2}$
$16=8 x^{2}$
$x^{2}=2$
$x=\sqrt{2} \quad x=-2 / 2$
6) $2 \log _{5}(-x)-\frac{3}{2} \log _{5} 25=-5$
$\log _{5}(-x)^{2}-\frac{3}{2} \cdot 2=-5$
$\log _{5}(-x)^{2}-3=-5$
$\log _{5} x^{2}=-2$
$x^{2}=5^{-2}$
$x^{2}=\frac{1}{25}$
$x= \pm \frac{1}{5}$
$x=\frac{1}{x} x=-\frac{1}{5}$

TYPE \#3: $\log _{b} x=\log _{a} y \rightarrow$ you should simplifylevaluate when you can
7) $\log _{3} x=2 \log _{5} 25$

$$
\begin{aligned}
& \log _{3} x=\log _{5}\left(5^{2}\right)^{2} \\
& \log _{3} x=\log _{5} 5^{4} \\
& \log _{3} x=4 \\
& 3^{4}=x \\
& x=81
\end{aligned}
$$

8) $\log _{3} x-2 \log _{3} 2=\log _{4} \frac{1}{16}$
$\log _{3} \frac{x}{2^{2}}=\log _{4} 4^{-2}$
$\log _{3} \frac{x}{4}=-2$

$$
3^{-2}=\frac{x}{4}
$$

$$
\frac{1}{9}=\frac{x}{4}
$$

$$
\frac{4}{9}=x
$$

9) $\log _{6}(2 x)^{2}+\frac{1}{2} \log _{6} 81=\log _{3} 27$

$$
\left.\log _{6}(2 x)^{2} \cdot\left(3^{4}\right)^{\frac{1}{2}}\right)=\log _{3} 3^{3}
$$

$$
\log _{6} 4 x^{2} \cdot 9=3
$$

$$
6^{3}=36 x^{2}
$$

$$
\begin{gathered}
\frac{6^{3}}{6^{2}}=x^{2} \\
6=x^{2} \\
x=\sqrt{6} x=-\sqrt{6}
\end{gathered}
$$

