480/81 Day 2

Notes

6.10 NOTES - SOLVING LOG EQUATIONS

OBJECTIVES:

1) Use properties of logarithms to evaluate logs, condense logs, and solve log equations.

SOLVING LOG EQUATIONS:

There are three types of logarithmic equations that you will be required to solve.

- 1) $\log_b x = \log_b y$ Both sides of the equation have the same log base.
- 2) log = #
- 3) $\log_b x = \log_a y$ Each side of the equation has a log with different bases, but one side can be evaluated.

TYPE #1: LOG=LOG

1)
$$\log_{6} x = \log_{6} 3$$

(x = 3) $\log_{3} x - 4\log_{3} 2 = \log_{3} 4$
(og $\frac{x}{2^{4}} = \log_{3} 9$
(og $\frac{x}{2^{4}} = \log_{3} 9$
(x + 4) + log(x + 6) = log 3
(x + 4)(x + 6) = 3
(x + 10x + 24 = 3
(x + 10x + 24 = 3
(x + 10x + 24 = 0
(x + 7)(x + 3) = 6
x = -(x = -3)

4) $\log_4 x + \log_4 3 = 2$ $\log_4 3x = 2$ $4^2 = 3x$ 16 = 3x $x = \frac{15}{3}$

5)
$$3\log_4 2 + 2\log_4 x = 2$$

 $\log_4 2^3 \cdot x^2 = 2$
 $\log_4 8x^2 = 2$
 $q^2 = 8x^2$
 $l_6 = 8x^2$
 $x^2 = 2$
 $x^2 = 2$
 $x^2 = 2$

6)
$$2\log_{5}(-x) - \frac{3}{2}\log_{5} 25 = -5$$

 $\log_{5}(-x)^{2} - \frac{3}{2} \cdot 2 = -5$
 $\log_{5}(-x)^{2} - 3 = -5$
 $\log_{5}(x^{2} = -2)$
 $x^{2} - 5^{-2}$
 $x^{2} = \frac{1}{25}$
 $x = \pm \frac{1}{5}$
 $x = \frac{1}{5}$

TYPE #3:
$$\log_{b} x = \log_{a} y$$
 \rightarrow you should simplify/evaluate when you can
7) $\log_{3} x = 2\log_{5} 25$ 8) $\log_{3} x - 2\log_{3} 2 = \log_{4} \frac{1}{16}$ 9) $\log_{6} (2x)^{2} + \frac{1}{2}\log_{6} 81 = \log_{3} 27$
 $\log_{3} x = \log_{5} (5^{2})^{2}$ $\log_{3} \frac{x}{2^{2}} = \log_{4} 4^{-2}$ $\log_{6} (2x)^{2} \cdot (3^{2})^{2} = \log_{3} 3^{3}$
 $\log_{3} x = \log_{5} 5^{4}$ $\log_{3} \frac{x}{4} = -2$ $\log_{6} (4x^{2} \cdot 9) = 3$
 $\log_{3} x = 4$ $3^{-2} = \frac{x}{4}$ $6^{3} = 36x^{2}$
 $3^{4} = x$ $\frac{1}{9} = \frac{x}{4}$ $\frac{6^{3}}{6^{2}} = x^{2}$
 $x = 81$ $\frac{4}{9} = x$ $6 = x^{2}$