OBJECTIVES:

1) Graph square root functions by translating the mother function.

GRAPHS OF SQUARE ROOT FUNCTIONS

Let's first take a look at the mother function $y=\sqrt{x}$.

Domain: Range:
$x \geq 0$
$y \geq 0$
Endpoint: (0,0)

Now let's translate a few of these graphs. We're just going to provide a sketch.
a. $y=\sqrt{x+2}$

D: $x \geq-2$
$R: y \geq 0$
Endpoint:
($-2,0$)
b. $y=\sqrt{x-4}$

D: $x \geq 4$
R: $y \geq 0$
Endpoint:
$(4,0)$
c. $y=-\sqrt{x}$

D: $x \geq 0$
R : $y \leq 0$
Endpoint:
$(0,0)$
d. $y=-\sqrt{x-4}$

f. $y=\sqrt{4-x}$

e. $y=\sqrt{-x}$

D: $x \leq 4$
$R: y \geq 0$
Endpoint:
$(4,0)$
g. $y=-\sqrt{-x}$

D: $x \leqslant 0$
R : $y \leq 0$
Endpoint: $(0,0)$
h. $y=-\sqrt{4-x}$

D: $x \leq 4$
$R: y \in 0$
Endpoint:
$(4,0)$
i. $y=\sqrt{x+3}-7$

D: $x \geq-3$
R: $y \geq-7$
Endpoint:
$(-3,-7)$
k. $y=-2+\sqrt{4-x}$

D: $x \geq 4$
$R: y \geq-2$
Endpoint:
$(4,-2)$
j. $y=-\sqrt{x+1}+7$

I. $y=-\sqrt{3-x}+5$

D: $x \geq-1$
$R: y \leq 7$ Endpoint: $(-1,7)$

CONCLUSIONS:

- $y=\sqrt{x-h}+k$ has endpoint (hi)
and domain $x \geq h$. $R: y \geq k$
- $y=\sqrt{x+h}+k$ has endpoint $(-h, k)$ and domain $x \geq-h$. R: $y \geq k$
- $y_{1}=\sqrt{x-h}+k$ and $y_{2}=\sqrt{h-\dot{x}}+k$ both have endpoint $\quad(h, k) \quad$, but the graph are different because: $\quad y_{2}$ is reflected over the y axis.
- $y_{1}=\sqrt{x-h}+k$ and $y_{2}=-\sqrt{x-h}+k$ both have endpoint (h, k) \qquad , but the graphs are different because: y_{2} is reflected over the x axis

General sketches:

1) $y=\sqrt{x}$
2) $y=-\sqrt{x}$

D: $x \geq 0$
$R: y \geqslant 0$
$D: x \geq 0$
$0: x \leq 0$
3) $y=-\sqrt{-x}$

4) $y=\sqrt{-x}$

$R: y \leqslant 0$
$R: y \geq 0$
D: $x \leq 0$
$R: y \leq 0$
