OBJECTIVES:

1) Graph cube root functions by translating the mother function.

GRAPHS OF CUBE ROOT FUNCTIONS

Let's first take a look at the mother function $y = \sqrt[3]{x}$.

Domain: R Range: R

Turning point: (0,0)

Now let's translate a few of these graphs. We're just going to provide a sketch.

a.
$$y = -\sqrt[3]{x}$$

- D: **R**
- R: Ŗ
- Point: (0,0)

b.
$$y = \sqrt[3]{x+3} + 5$$

Point: (-3,5)

c.
$$y = \sqrt[3]{-x}$$

Point: (0,0)

d.
$$y = -2 + \sqrt[3]{4 - x}$$

R: R

Point:

(4,-2)

e.
$$y = -\sqrt[3]{x}$$

- D: 🔑
- R: 12

Endpoint: (0,0)

f. $y = 5 - \sqrt[3]{x - 1}$

- D: **P**
- R: R

Endpoint: (1,5)

e.
$$y = -\sqrt[3]{-x}$$

- D:' Ŗ
- R: R

Endpoint: (0,0)

f. $y = 5 - \sqrt[3]{1-x}$

- D: R
- R: 🕦

Endpoint: (1,5)

CONCLUSIONS:

- $y = k + \sqrt[3]{x h}$ has a turning point (h, k), domain \mathbb{R} and range \mathbb{R} .
- $y = k \sqrt[3]{x h}$ has a turning point $\frac{(h_1 k)}{x}$, domain $\frac{R}{x}$ and range $\frac{R}{x}$.
- $y = k + \sqrt[3]{h x}$ has a turning point (h, k), domain \mathbb{R} and range \mathbb{R} .
- $y = k \sqrt[3]{h x}$ has a turning point (h, k), domain \mathbb{R} and range \mathbb{R} .

General sketches:

1)
$$y = \sqrt[3]{x}$$

2)
$$y = -\sqrt[3]{x}$$

3)
$$y = \sqrt[3]{-x}$$

4)
$$y = -\sqrt[3]{-x}$$

5) Write the equation of an irrational function that has a turning point (3,5) and domain of all real numbers.

$$y = 5 + \sqrt[3]{x - 3}$$
 OR $y = 5 - \sqrt[3]{x - 3}$

6) Write a DIFFERENT irrational function with the same graph as the problem above.