GRAPHING CUBE ROOT FUNCTIONS

OBJECTIVES:

1) Graph cube root functions by translating the mother function.

GRAPHS OF CUBE ROOT FUNCTIONS

Let's first take a look at the mother function $y=\sqrt[3]{x}$.

x	y
-8	-2
-1	-1
0	0
1	1
8	2

Domain: \mathbb{R} Range: \mathbb{R}

Turning point: $(0,0)$

Now let's translate a few of these graphs. We're just going to provide a sketch.
a. $y=-\sqrt[3]{x}$

b. $y=\sqrt[3]{x+3}+5$

D: \mathbb{R}
$R: \mathbb{R}$
Point:
$(-3,5)$
c. $y=\sqrt[3]{-x}$

d. $y=-2+\sqrt[3]{4-x}$
$D: \mathbb{R}$
R: \mathbb{R}
Point:
$(4,-2)$
e. $y=-\sqrt[3]{x}$

f. $y=5-\sqrt[3]{x-1}$
e. $y=-\sqrt[3]{-x}$

f. $y=5-\sqrt[3]{x-1}$

f. $y=5-\sqrt[3]{1-x}$

D: \mathbb{R}
$R: \mathbb{R}$
Endpoint:
$(1,5)$

CONCLUSIONS:

- $y=k+\sqrt[3]{x-h}$ has a turning point \qquad (hi) , domain \qquad and range \mathbb{R}
$D: \mathbb{R}$
$R: \mathbb{R}$ Endpoint: $(1,5)$
- $y=k-\sqrt[3]{x-h}$ has a turning point \qquad (h, k) , domain \qquad and range \mathbb{R}
\qquad .
- $y=k+\sqrt[3]{h-x}$ has a turning point \qquad (h,k) , domain仅 and range \qquad \mathbb{R} and range \qquad \mathbb{R} .

General sketches:

1) $y=\sqrt[3]{x}$
2) $y=-\sqrt[3]{x}$
3) $y=\sqrt[3]{-x}$
4) $y=-\sqrt[3]{-x}$

5) Write the equation of an irrational function that has a turning point $(3,5)$ and domain of all real numbers.

$$
y=5+\sqrt[3]{x-3} \quad \text { or } \quad y=5-\sqrt[3]{x-3}
$$

6) Write a DIFFERENT irrational function with the same graph as the problem above.

$$
y=5-\sqrt[3]{3-x} \quad \text { OR } \quad y=5+\sqrt[3]{3-x}
$$

