DEFINING A MATRIX

I. Organizing Data in a Matrix

A matrix is a way of organizing data. (Plural is matrices.) For example, the following matrix will be used to organize hair color by gender

The size of a matrix, called its dimensions, is reported by writing: \# of rows \times \# of columns
The dimension of the matrix above is: \qquad 2 \times \qquad
Give the dimension of each matrix:
1.) $\left[\begin{array}{cc}-12 & 1 \\ 2 & 3 \\ 1 & -5\end{array}\right] 3 \times 2$
2.) $\left[\begin{array}{ccc}1 & 4 & 3 \\ -2 & -8 & -6\end{array}\right] \quad 2 \times 3$
3.) $\left[\begin{array}{c}11 \\ 4 \\ 21\end{array}\right] \quad 3 \times 1$

ADDING/SUBTRACTING MATRICES

Note: The dimensions must be the same to be added or subtracted.
1.) $\left[\begin{array}{cc}2 & 1 \\ 3 & 6 \\ 2 & -3\end{array}\right]+\left[\begin{array}{cc}-1 & -9 \\ 4 & 10 \\ 7 & -4\end{array}\right]$

$$
3 \times 2+3 \times 2
$$

2.) $\left[\begin{array}{lll}2 & -10 & 15\end{array}\right]+\left[\begin{array}{c}1 \\ -16 \\ -13\end{array}\right]$
3.) $\left[\begin{array}{ccc}1 & -2 & 5 \\ 4 & 3 & -6\end{array}\right]+\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & -3 & 7\end{array}\right]$
$1 \times 33 \times 1$
$2 \times 3+2 \times 3$
$\left[\begin{array}{cc}1 & -8 \\ 7 & 16 \\ 9 & -7\end{array}\right]$
Can't be added

$$
\left[\begin{array}{ccc}
3 & -1 & 5 \\
5 & 0 & 1
\end{array}\right]
$$

A matrix can be multiplied by a scalar (a number) by multiplying each element of the matrix that scalar:

$$
-3\left[\begin{array}{ccc}
2 & -23 & 1 \\
5 & 11 & -8
\end{array}\right]=\left[\begin{array}{ccc}
-6 & 69 & -3 \\
-15 & -33 & 24
\end{array}\right]
$$

DETERMINANTS AND INVERSES
The DETERMINANT determines whether a matrix has a multiplicative inverse.
We will only take a look at 2×2 matrices since matrices that are larger than that are way beyond this course!

The way we take a determinant of a 2×2 matrices is shown below:

$$
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

**Fast Fact: If the product equals zero, then the matrix has no multiplicative inverse!

Find the determinant and state if a multiplicative inverse exists.

1. $\left[\begin{array}{cc}6 & -3 \\ 9 & 3\end{array}\right]$

$$
\begin{aligned}
\operatorname{det} & =(6 \cdot 3)-(-3 \cdot a) \\
& =18-(-27) \\
& =45
\end{aligned}
$$

Has an inverse
2. $\left[\begin{array}{ll}4 & 12 \\ 2 & 6\end{array}\right]$

$$
\operatorname{det}=(6 \cdot 4)-(2 \cdot 12)
$$

$$
=24-24
$$

$$
=0
$$

$$
\begin{aligned}
& \text { 3. } \left.\begin{array}{cc}
-15 & 1 \\
4 & 3
\end{array}\right] \\
& \begin{aligned}
\operatorname{det} & =(-15 \cdot 3)-(1 \cdot 4) \\
& =-45-4 \\
& =-49
\end{aligned}
\end{aligned}
$$

No inverse!

Has an inverse!

MULTIPLICATION OF TWO MATRICES

A. Determine whether two matrices can be multiplied.
*First write down the dimensions of each matrix.
*If the middle numbers are the same, then the two matrices can be multiplied.
*The outside numbers will result in the dimensions of the product.
Example: $\left[\begin{array}{ccc}2 & -3 & 1 \\ 5 & 10 & -8\end{array}\right] \times\left[\begin{array}{cc}3 & 1 \\ 7 & 3 \\ 2 & -4\end{array}\right]$
B. Multiplying matrices
*Use the idea of taking rows with columns together. You will find the product of each corresponding row \& column entry and then take the sum of those entries.

Examples: Determine whether the matrices can be multiplied and then compute the product.
1.) $\left[\begin{array}{cc}5 & -7 \\ 1 & 4\end{array}\right]\left[\begin{array}{cc}-12 & 3 \\ 2 & 0\end{array}\right] \underset{\text { can be mull. }}{\substack{2 \times 2}}$
2.) $\left[\begin{array}{cc}1 & -3 \\ -2 & 5 \\ -3 & 7\end{array}\right]\left[\begin{array}{cc}2 & -4 \\ 10 & -11\end{array}\right]$

$\left[\begin{array}{ll}\frac{5(-12)+-7(2)}{1(-12)+4(2)} & \frac{5(3)+-7(0)}{1(3)+4(0)}\end{array}\right]=\left[\begin{array}{cc}-60-14 & 15+0 \\ -12+8 & 3+0\end{array}\right]$

$$
\left[\begin{array}{ll}
\frac{1.2+-3 \cdot 10}{-2(2)+5(10)} & \frac{1(-4)+-3(-11)}{-2(-4)+5(-11)} \\
-3(2)+7(10) & \frac{-3(-4)+7(-11)}{}
\end{array}\right]=\left[\begin{array}{cc}
\frac{2-30}{} & \frac{-4+33}{-4+50} \\
\frac{8-55}{-6+70} & -12-77
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
-74 & 15 \\
-4 & 3
\end{array}\right]
$$

$$
\left[\begin{array}{rr}
-28 & 29 \\
46 & -47 \\
64 & -65
\end{array}\right]
$$

3.) $\left[\begin{array}{c}3 \\ 8 \\ -13\end{array}\right]\left[\begin{array}{ll}1 & 9\end{array}\right] \underbrace{3 \times 1 \cdot 1}_{3 \times 2} \times 2$
4.) $\left[\begin{array}{c}1 \\ -2 \\ 6 \\ 7\end{array}\right]\left[\begin{array}{llll}2 & -8 & 7 & -12\end{array}\right] \underbrace{4 \times 1 \times 4}_{4 \times 4}$

$$
\left[\begin{array}{cc}
3(1) & 3(9) \\
8(1) & 8(9) \\
-13(1) & -13(9)
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
1 \cdot 2 & 1(-8) & 1(7) & 1(-12) \\
-2(2) & -2(-8) & -2(7) & -2(-12) \\
6(2) & 6(-8) & 6(7) & 6(-12) \\
7(2) & 7(-8) & 7(7) & 7(-12)
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
3 & 27 \\
8 & 72 \\
-13 & -117
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
2 & -8 & 7 & -12 \\
-4 & 16 & -14 & 24 \\
12 & -48 & 42 & -72 \\
14 & -56 & 49 & -84
\end{array}\right]
$$

