OBJECTIVE:

1) Complete the square to determine the quadratic shape.
2) Write the equation of a hyperbola from given information.

Determine the shape of the quadratic and graph the figure. Include all important information.

1. $x^{2}+4 x-4 y^{2}+8 y=36$

$$
\begin{aligned}
& 1\left(x^{2}+4 x+4\right)-4\left(y^{2}-2 y+1\right)=36+4-4 \\
& (x+2)^{2}-4(y-1)^{2}=36 \\
& \frac{(x+2)^{2}}{36}-\frac{(y-1)^{2}}{9}=1
\end{aligned}
$$

Center: $(-2,1)$
vertices: $(4,1)(-8,1)$
Fool: $(-2+3 \sqrt{5}, 1)(-2-3 \sqrt{5}, 1)$

$$
\begin{aligned}
& F^{2}=r_{x}^{2}+r_{y}^{2} \\
& F^{2}=36+9 \approx \text { between } 6 / 7 \text { units } \\
& F=\sqrt{45}^{2}=3 \sqrt{5}
\end{aligned}
$$

Asymptotes: $m= \pm \frac{r_{y}}{r_{x}}= \pm \frac{3}{6}= \pm \frac{1}{2}$
Equation:

$$
y-1= \pm \frac{1}{2}(x+2)
$$

2. $y^{2}+6 y-4 x^{2}-8 x=59$

$$
\begin{align*}
& -4\left(x^{2}+2 x+1\right)+1\left(y^{2}+6 y+9\right)=59-4+9 \\
& -4(x+1)^{2}+(y+3)^{2}=64 \\
& -\frac{(x+1)^{2}}{16}+\frac{(y+3)^{2}}{64}=1 \\
& \text { Center: }(-1,-3) \\
& \text { vertices: }(-1,-11)(-1,5) \\
& \text { Foci: }(-1,-3+4 \sqrt{5})(-1,-3-4 \sqrt{5}) \\
& F^{2}=r_{x}^{2}+r_{y}^{2} \\
& =16+64 \\
& F=\sqrt{80}=4 \sqrt{5} \\
& \text { Asymptotes: } \\
& \text { m }= \pm \frac{r_{y}}{r_{0}}= \pm \frac{9}{4}= \pm 2
\end{align*}
$$

Write the equation of the hyperbola that fits the given information below:

5) Vertices $(1,1)$ and $(1,-3)$ and Foci $(1,-1 \pm \sqrt{5})$
Watch the Fid!
$6)$ Vertices $(-3,-3)$ and (5, -3) and Foci $(-5,-3)$ and (7, -3).

$$
\begin{aligned}
& \text { Center: }(1,-3) \\
& \text { From vertices: } \\
& r_{x}=4 \\
& \text { From foci: } F=6 \\
& F^{2}=r_{x}^{2}+r_{y}^{2} \\
& 36=16+r_{y}^{2} \quad r_{y}^{2}=20
\end{aligned}
$$

7) Vertices $(-7,0)$ and $(7,0)$ and conjugate axis of length 10 units.

$$
\begin{aligned}
& \text { Watch } \\
& \text { the vid! }
\end{aligned}
$$

