OBJECTIVES:

1) Identify the possible rational zeros of a polynomial function.
2) Find all the roots of a polynomial function.

ROOT: The roots of a polynomial are the points where the graph of the polynomial cross the x-axis. Roots can also be called zeros, solutions or intercepts, but they all mean the same thing!

Example: $f(x)=x^{3}-2 x^{2}-5 x+6$

REVIEW:

Zeros: -2, 1, 3

1) Factor completely: $2 x^{2}+8 x+6$.

2) Solve by factoring, $x^{2}-x-12=0$
$(x-4)(x+3)=0$
$x=4,-3$
3) Relationship between zeros and factors. Complete the chart.

Zeros	2	-3	-6	5	$-\sqrt{7}$
Factors	$(x-2)$	$(x+3)$	$(x+6)$	$(x-5)$	$(x+\sqrt{7})$

4) Consider the polynomial $f(x)=4 x^{2}-3 x+6$.
a. Divide the polynomial by $(x-2)$.
$\left.2\right|^{2} \begin{array}{ccc}4 & -3 & 6 \\ & 8 & 10 \\ 4 & 5 & 16\end{array}$
b) Evaluate $f(2) . \quad f(2)=4(2)^{2}-3(2)+6=16-6+6=16$
c) How is the value of $f(2)$ related to the remainder we got in part a)?

They are the same!

REMAINDER THEOREM: When a polynomial $f(x)$ is divided by $(x-r)$, then the remainder is $f(r)$.

FACTOR THEOREM: $(x-b)$ is a factor of $f(x)$ if and only if $f(b)=0$.
In other words: a) If $(x-r)$ is a factor of $f(x)$, then $\quad f(r)=0$
\underbrace{r}

0 then ($x-r$) factors $f(x)$
5) Is 2 a root of $x^{3}-4 x^{2}+3 x+7$?

$$
f(2)=2^{3}-4(2)^{2}+3(2)+7=8-16+6+7=5 \quad N_{0}, 2 \text { is not a root. }
$$

6) Find $f(-3)$ to determine whether $(x+3)$ is a factor of $f(x)=2 x^{3}+11 x^{2}+18 x+9$.

$$
\begin{aligned}
f(-3) & =2(-3)^{3}+11(-3)^{2}+18(-3)+9 \\
& =-54+99-54+9=0 \quad \text { Yes, }(x+3) \text { is a factor! }
\end{aligned}
$$

7) Is $(x-1)$ a factor of $f(x)=x^{3}-2 x+1$?

$$
f(1)=1-2(1)+1=0 \text { Yes! }
$$

LISTING ALL POSSIBLE RATIONAL ROOTS:

So let's take a look at the function, $f(x)=x^{3}-2 x^{2}-5 x+6$, our original example from before. From the graph, we already know what our factors and zeros should be, but we will now find them algebraically.

Example 1) $f(x)=x^{3}-2 x^{2}-5 x+6$
a) Look for factors of $\pm \frac{p}{q}$ where $\frac{p}{q}=\frac{\text { factors of the constant }}{\text { factors of the lead coefficient }}$
$\pm \frac{p}{a}=\frac{ \pm 1, \pm 2, \pm 3, \pm 6}{ \pm 1}= \pm 1,2,3,6$

$$
\begin{array}{ll}
f(1)=0 & f(6)=120 \\
f(-1)=8 & f(-6)=-252
\end{array}
$$

$$
f(2)=-4
$$

$$
f(-2)=0
$$

$$
f(3)=0
$$

FACTORING THE POLYNOMIAL:

$$
f(-3)=-24
$$

b) Using the factor found from part a, use long/synthetic division to find other factors.

$$
f(1)=0 \text { so }(x-1) \text { is a factor of } x^{3}-2 x^{2}-5 x+6
$$

Factor: $x^{2}-x-6$

$$
(x-3)(x+2)
$$

Example 2) Factor: $f(x)=4 x^{3}-5 x^{2}-23 x+6$ if $f(-2)=0$.
a) List all of the possible rational zeros.
b) Factor the polynomial.

$$
\text { a) } \pm \frac{p}{9}=\frac{ \pm 1,2,3,6}{ \pm 1,2,4}= \pm 1, \frac{1}{2}, \frac{1}{4}, 2,3,3 / 2,3 / 4,6
$$

b) $f(-2)=0$ so $(x+2)$ is a factor

$$
-2 \left\lvert\, \begin{array}{ccc}
4-5 & -23 & 6 \\
-8 & 26 & -6
\end{array} \begin{gathered}
\text { Factor: } \\
4 x^{2}-13 x+3 \\
4-13 \\
\hline
\end{gathered}\right.
$$

$$
(x+2)(x-3)(4 x-1)
$$

Example 3) Factor: $f(x)=4 x^{4}-5 x^{3}-26 x^{2}+9 x+18$
a) List all of the possible rational zeros.
b) Factor the polynomial.

Example 4) Factor: $f(x)=x^{3}-3 x^{2}-16 x-12$ if $f(6)=0$.
a) List all of the possible rational zeros.
b) Factor the polynomial.
a) $\pm \frac{p}{a}=\frac{ \pm 1,2,3,4,6,12}{ \pm 1}= \pm 1,2,3,4,6,12$
b) $f(6)=0 \Rightarrow(x-6)$ is a factor

$$
\begin{array}{ll}
6 \begin{array}{rrrr}
1 & -3 & -16 & -12 \\
6 & 18 & 12 \\
1 & 3 & 2 & 10) \\
x^{2}+3 x+2 & \\
(x+1)(x+2) & \\
(x-6)(x+1)(x+2) \\
\hline
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { a) } \frac{ \pm p}{q}=\frac{ \pm 1,2,3,6,9,18}{ \pm 1,2,4}= \pm 1, \frac{1}{2}, \frac{1}{4}, 2,3, \frac{3}{2}, \frac{3}{4}, 6,9,9 / 2,9 / 4,18 \\
& f(1)=0 \text { so }(x-1) \text { is a factor. } \\
& 1\left[\begin{array}{ccccc}
4 & -5 & -26 & 9 & 18 \\
4 & -1 & -27 & -18 \\
4 & -1 & -27 & -18 & 10
\end{array}\right. \\
& -2 \left\lvert\, \begin{array}{cccc}
4 & -1 & -27 & -18 \\
& -8 & 18 & 18 \\
4 & -9 & -9 & 105
\end{array}\right. \\
& \text { Answer: } \\
& (x-1)(x+2)(4 x+3)(x-3) \\
& h(x)=4 x^{4}-x^{3}-27 x^{2}-18 x \\
& 4 x^{2}-9 x-9 \\
& 4 x^{2}-12 x+3 x-9 \\
& 4 x(x-3)+3(x-3)=(4 x+3)(x-3)
\end{aligned}
$$

