(PART 1) 7.6 NOTES - FACTOR THEOREM

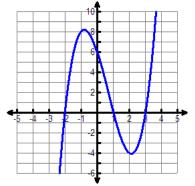
OBJECTIVES:

- 1) Identify the possible rational zeros of a polynomial function.
- 2) Find all the roots of a polynomial function.

ROOT: The <u>roots</u> of a polynomial are the points where the graph of the polynomial cross the x-axis. Roots can also be called zeros, solutions or intercepts, but they all mean the same thing!

Example: $f(x) = x^3 - 2x^2 - 5x + 6$

Zeros: -2, 1, 3



REVIEW:

1) Factor completely: $2x^2 + 8x + 6$.

2) Solve by factoring, $x^2 - x - 12 = 0$

$$(x-4)(x+3)=0$$

 $x=4,-3$

3) Relationship between zeros and factors. Complete the chart.

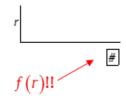
Zeros	2	-3	-6	5	-17
Factors	(x-2)	(x+3)	(x+6)	(x-5)	$\left(x+\sqrt{7}\right)$

- 4) Consider the polynomial $f(x) = 4x^2 3x + 6$.
 - a. Divide the polynomial by (x-2).

- b) Evaluate f(2). $f(2) = 4(2)^2 3(2) + 6 = 16 6 + 6 = 16$
- c) How is the value of f(2) related to the remainder we got in part a)?

They are the same!

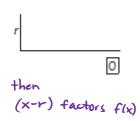
REMAINDER THEOREM: When a polynomial f(x) is divided by (x-r), then the remainder is f(r).



FACTOR THEOREM: (x-b) is a factor of f(x) if and only if f(b) = 0.

In other words: a) If (x-r) is a factor of f(x), then f(r) = 0

b) If
$$f(r) = 0$$
, then $(x-r)$ is a factor of $f(x)$.



5) Is 2 a root of $x^3 - 4x^2 + 3x + 7$?

6) Find f(-3) to determine whether (x+3) is a factor of $f(x) = 2x^3 + 11x^2 + 18x + 9$.

$$f(-3) = 2(-3)^3 + 11(-3)^2 + 18(-3) + 9$$

= -54 + 99 - 54 + 9 = 0 Yes, (x+3) is a factor!

7) Is
$$(x-1)$$
 a factor of $f(x) = x^3 - 2x + 1$?

LISTING ALL POSSIBLE RATIONAL ROOTS:

So let's take a look at the function, $f(x) = x^3 - 2x^2 - 5x + 6$, our original example from before. From the graph, we already know what our factors and zeros should be, but we will now find them algebraically.

Example 1)
$$f(x) = x^3 - 2x^2 - 5x + 6$$

a) Look for factors of $\pm \frac{p}{q}$ where $\frac{p}{q} = \frac{\text{factors of the constant}}{\text{factors of the lead coefficient}}$

$$\pm \frac{\rho}{q} = \frac{\pm 1, \pm 2, \pm 3, \pm 6}{\pm 1} = \boxed{\pm 1, 2, 3, 6}$$

$$f(1) = 0$$
 $f(6) = 120$
 $f(-1) = 8$ $f(-6) = -252$
 $f(2) = -4$
 $f(-2) = 0$
 $f(3) = 0$

f(-3) = -24

FACTORING THE POLYNOMIAL:

b) Using the factor found from part a, use long/synthetic division to find other factors.

$$f(1) = 0$$
 so $(x-1)$ is a factor of $x^3 - 2x^2 - 5x + 6$

Factor:
$$x^2 - x - 6$$

(x-3)(x+2)

$$(x-1)(x-3)(x+2)$$
 $(x-1)(x-3)(x+2)$
 $(x-1)(x-3)(x+2)$

notice:
$$(-1)(-3)(2) = 6$$

 $\times \cdot \times \cdot \times = \times^{3}$

Example 2) Factor:
$$f(x) = 4x^3 - 5x^2 - 23x + 6$$
 if $f(-2) = 0$.

- a) List all of the possible rational zeros.
- b) Factor the polynomial.

a)
$$\pm \frac{P}{q} = \frac{\pm 1,2,3,6}{\pm 1,2,4} = \left[\pm 1, \frac{1}{2}, \frac{1}{4}, 2, 3, \frac{3}{2}, \frac{3}{4}, 6\right]$$

b)
$$f(2) = 0$$
 so $(x+2)$ is a factor

Factor:

 $-2 \begin{bmatrix} 4-5-23 & 6 & 4x^2-13x+3 \\ -8 & 26-6 & 4x^2-12x-x+3 \\ 4-13 & 3 & 6 \end{bmatrix}$
 $(4x-1)(x-3)$

Example 3) Factor:
$$f(x) = 4x^4 - 5x^3 - 26x^2 + 9x + 18$$

- a) List all of the possible rational zeros.
- b) Factor the polynomial.

Example 4) Factor:
$$f(x) = x^3 - 3x^2 - 16x - 12$$
 if $f(6) = 0$.

- a) List all of the possible rational zeros.
- b) Factor the polynomial.

a)
$$\pm \frac{P}{q} = \pm \frac{1,2,3,4,6,12}{\pm 1} = \pm 1,2,3,4,6,12$$