CONJUGATE ROOTS AND DESCARTES' RULE OF SIGNS

OBJECTIVES: 1) Use the conjugate roots theorem to solve an equation.
2) Determine all of the possible combinations of roots of a polynomial.

THE CONJUGATE ROOTS THEOREM:

Let $\mathrm{f}(\mathrm{x})$ be a polynomial, all of whose coefficients are real numbers. Suppose that $a+b i$ is a root of the equation $\mathrm{f}(\mathrm{x})=0$. Then $a-b i$ is also a root. (Complex roots come in pairs!)

THE IRRATIONAL ROOTS THEOREM:

Let $f(x)$ be a polynomial, all of whose coefficients are real numbers. Suppose that $a+b \sqrt{c}$ is a root of the equation $f(x)=0$. Then $a-b \sqrt{c}$ is also a root.

1) Solve $3 x^{4}-x^{3}-7 x^{2}+49 x-60=0$ if $1+2 i$ is a root.
2) Find a quadratic equation with rational coefficients and a leading coefficient of 1 such that one of the roots is $r_{1}=2+5 \sqrt{3}$.

$$
\begin{aligned}
& c=r_{1} \cdot r_{2}=(2+5 \sqrt{3})(2-5 \sqrt{3}) \\
& c=4-25 \cdot 3=-71 \\
& b=-(2+5 \sqrt{3}+2-5 \sqrt{3}) \\
& b=-4
\end{aligned}
$$

$$
x^{2}-4 x-71=0
$$

$$
\begin{aligned}
& (1+2 i)(1-2 i)=c \quad-(1+2 i+1-2 i)=b \\
& \begin{array}{lr}
c=1-4 i^{2} & -(2)=6 \\
c=5 & b=-2
\end{array} \\
& x^{2}-2 x+5 \text { is a factor of } 3 x^{4}-x^{3}-7 x^{2}+49 x-60 \text {. } \\
& \text { Now use long division! } \quad \begin{array}{c}
3 x^{2}+5 x-12
\end{array} \begin{array}{l}
3 x^{2}+5 x-12=0 \\
(3 x-4)(x+3)=0
\end{array} \\
& x ^ { 2 } - 2 x + 5 \longdiv { 3 x ^ { 4 } - x ^ { 3 } - 7 x ^ { 2 } + 4 9 x - 6 0 } \\
& 1-2 i \left\lvert\, \begin{array}{cccc}
3 & 2+6 i & 10 i-17 & 12-24 i \\
3-6 i & -10 i+5 & -12+24 i \\
3 & 5 & -12 & 0
\end{array}\right. \\
& \therefore 3 x^{2}+5 x-12 \text { is a factor } \\
& x=4 / 3 \quad x=-3
\end{aligned}
$$

DESCARTES' RULE OF SIGNS:

For any polynomial $f(x)$, use the number of sign changes in $f(x)$ and $f(-x)$ to predict the maximum number of positive or negative (real) roots.

List all of the possible combinations of roots for the following polynomials:
3) $f(x)=x^{3}+x^{2}-x+1$
$f(x)=x^{3}+x^{2}-x+1$
2 sign changes: max 2 pos. roots
$f(-x)=-x^{3}+x^{2}+x+1$
Isign change: max 1 neg. root

pos.	neg.	nonreal complex
2	1	0
0	1	2

5) $f(x)=x^{3}-14 x^{2}+62 x-88$
$f(x)=x^{3}-14 x^{2}+62 x-88$
3 sign changes: max 3 pors.roots
$f(-x)=-x^{3}-14 x^{2}-62 x-28$
0 sign changes: no neq. roots

pos	neg	non-real
3	0	0
1	0	2

7) $f(x)=5 x^{4}+x^{2}-3 x-2$
$f(x)=5 x^{4}+x^{2}-3 x-2$
2 sign changes \Rightarrow max 2 pos, roots
$f(-x)=5 x^{4}+x^{2}+3 x-2$
1 sign change $\rightarrow \max$ I neg. root

pos.	neg	nonreal
2	0	2
0	0	4

4) $f(x)=x^{3}+x^{2}+x+1$
$f(x)=x^{3}+x^{2}+x+1$
0 signchanges: 0 pos roots
$f(-x)=-x^{3}+x^{2}-x+1$
3 sign changes: max 3 neg. roots

pos.	neg.	noureal
0	3	0
0	1	2

6) $f(x)=x^{5}-x^{4}-3 x^{3}+2 x^{2}+x-5$
$f(x)=x^{5}-x^{4}-3 x^{3}+2 x^{2}+x-5$
3 sign changes: max 3 pos roots $f(-x)=-x^{5}-x^{4}+3 x^{3}+2 x^{2}-x-5$

2 sign changes: max 2 neg roots

8) $f(x)=3 x^{5}+2 x^{4}-5 x^{3}+4 x^{2}+6 x+7$
$f(x)=3 x^{5}+2 x^{4}-5 x^{3}+4 x^{2}+6 x+7$
2 sign changes: max 2 pos. roots
$f(-x)=-3 x^{5}+2 x^{4}+5 x^{3}+4 x^{2}-6 x+7$
3 sign changes: max 3 neg. roots

+	-	i
2	3	0
0	3	2
2	1	2
0	1	4

