## CONJUGATE ROOTS AND DESCARTES' RULE OF SIGNS

**OBJECTIVES**: 1) Use the conjugate roots theorem to solve an equation.

2) Determine all of the possible combinations of roots of a polynomial.

## THE CONJUGATE ROOTS THEOREM:

Let f(x) be a polynomial, all of whose coefficients are real numbers. Suppose that a + bi is a root of the equation f(x)=0. Then a - bi is also a root. (Complex roots come in pairs!)

## THE IRRATIONAL ROOTS THEOREM:

Let f(x) be a polynomial, all of whose coefficients are real numbers. Suppose that  $a + b\sqrt{c}$  is a root of the equation f(x)=0. Then  $a - b\sqrt{c}$  is also a root.

1) Solve  $3x^4 - x^3 - 7x^2 + 49x - 60 = 0$  if 1 + 2i is a root.



2) Find a quadratic equation with rational coefficients and a leading coefficient of 1 such that one of the roots is  $r_1 = 2 + 5\sqrt{3}$ .

$$c = r_1 \cdot r_2 = (2 + 5 \cdot 3)(2 - 5 \cdot 3)$$
  

$$c = 4 - 25 \cdot 3 = -71$$
  

$$b = -(2 + 5 \cdot 3 + 2 - 5 \cdot 3)$$
  

$$b = -4$$

## DESCARTES' RULE OF SIGNS:

For any polynomial f(x), use the number of sign changes in f(x) and f(-x) to predict the maximum number of positive or negative (real) roots.

List all of the possible combinations of roots for the following polynomials:

3) 
$$f(x) = x^3 + x^2 - x + 1$$
  
 $f(x) = x^3 + x^2 - x + 1$   
 $f(x) = x^3 + x^2 - x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x^2 + x + 1$   
 $f(x) = x^3 + x^2 + x^2 + 5x^2 + 4x^2 + 5x + 7$   
 $f(x) = x^3 + x^2 + x^2 + 5x^2 + 4x^2 + 5x^2 + 7x^2 + 5$ 

wrong! not an option!

max 2 pos. roots

max 3 neg. roots