STEPS IN SOLVING LINEAR PROGRMMING PROBLEMS

1. Read the problem. Then READ again!
2. Define variables.
3. Find the objective quantity (this is what you are trying to $\mathrm{min} / \mathrm{max}$).
4. Find constraints (these are inequalities).
5. Graph the inequalities.
6. Find all corner points of your feasible region (solve a system!).
7. Test all corner points in your objective quantity (to find the max/min).
8. Answer the question in a sentence.

TICKETS PROBLEM

Fly High Airlines sells business class and tourist class seats for its charter flights. To charter a plane, at least 5 business class tickets must be sold and at least 9 tourist class tickets must be sold. The plane does not hold more than 30 passengers. Fly-High makes $\$ 40$ profit for each business class ticket sold and $\$ 45$ profit for each tourist class ticket sold. In order for Fly-High Airlines to maximize profits, how many tourist class seats should they sell? $x=\#$ of business class tie sold

$$
y=\text { \# of tounst class twx sold }
$$

CORNER POINTS - SOLVING SYSTEMS!

OBJECTIVE QUANTITY

$$
40 x+45 y=\operatorname{profit}
$$

$$
A(5,25)-\left\{\begin{array}{l}
x=5 \\
x+y=30
\end{array}\right.
$$

$$
x \geq 5
$$

$$
y \geq 9
$$

HAMBURGERS AND HOT DOGS PROBLEM

A snack bar cooks and sells hamburgers and hot dogs during football games. To stay in business, it must sell at least 10 hamburgers but cannot cook more than 40 . It must also sell at least 30 hot dogs but cannot cook more than 70. It cannot cook more than 90 sandwiches all together. The profit on a hamburger is $\$ 0.33$ and $\$ 0.21$ on a hot dog. How many of each kind of sandwich should the stand sell to make the maximum profit?

$$
\begin{aligned}
& x=\# \text { of hamburgers } \\
& y=\# \text { of hotdogs }
\end{aligned}
$$

Objective quantity:
Max Profit $=.33 x+.21 y$

Constraints:

$$
\left\{\begin{array}{l}
x \geq 10 \quad x \leq 40 \\
y \geq 30 \quad y \leq 70 \\
x+y \leq 90
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Corner points } \\
& \text { A) }(10,70) \\
& \text { B) }(20,70)-\left\{\begin{array}{l}
x+y=90 \\
y=70
\end{array}\right. \\
& \text { C) }(40,50)-\left\{\begin{array}{l}
x+y=90 \\
x=40
\end{array}\right. \\
& \text { D) }(40,30) \\
& \text { E) }(10,30)
\end{aligned}
$$

Testing Corner Points: $P=.33 x+.21 y$
A) $(10,70)-\$ 18.00$
B) $(20.70)-\$ 21.30$
C) $(40,50)-23.70$ *
D) $(40,30)-\$ 19.50$
e) $(10,30)-\$ 9.60$

* They will get a max profit of $\$ 23.70$ when they sell 40 hamburgers and 50 hotdogs.

