Date: \qquad Period: \qquad

1. A closed box with a square base is made of material that costs $\$ 10$ per m^{2} for the top and bottom and $\$ 5$ per m^{2} for the sides. The volume of the box is $8 m^{3}$. Express the cost of the material for the box as a function of x.

x

$$
\begin{array}{ll}
V=x^{2} h & S A=2 x^{2}+4 x h \\
8=x^{2} h & C(x)=2 x^{2}(10)+4 x \cdot \frac{8}{x^{2}}(5) \\
h=\frac{8}{x^{2}} & C(x)=20 x^{2}+\frac{160}{x}
\end{array}
$$

2. A pile of sand is in the shape of a cone with a diameter that is 5 times the height. Express the volume of sand as a function of the radius.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} \cdot h \\
& V(r)=\frac{1}{3} \pi r^{2} \cdot \frac{2}{5} r \\
& V(r)=\frac{2}{15} \pi r^{3}
\end{aligned}
$$

3. Express the area of an equilateral triangle as a function of the height of the triangle.

$$
\begin{array}{lll}
A=\frac{1}{2} b h & b^{2}\left(1-\frac{1}{4}\right)=h^{2} & b=\sqrt{\frac{4}{3} h^{2}} \\
\left(\frac{b}{2}\right)^{2}+h^{2}=b^{2} & \frac{3}{4} b^{2}=h^{2} & b=\frac{2}{\sqrt{3}} h \quad A(h)=\frac{1}{2}\left(\frac{2}{\sqrt{3}} h\right) h \\
h^{2}=b^{2}-\frac{b^{2}}{4} & b^{2}=\frac{4}{3} h^{2} & A(h)=\frac{1}{\sqrt{3}} h^{2}
\end{array}
$$

4. $\quad P(x, y)$ is an arbitrary point on the line $4 x-2 y=6$. What is the distance from P to the point $(-2,7)$ as a function of the y coordinate of P ?

$$
\begin{aligned}
& (-2,0) \quad d(y)= \\
& 4 x-2 y=6 \\
& 4 x=2 y+6 \quad x=\frac{1}{2} y+\frac{3}{2}
\end{aligned}
$$

5. A rectangular dog pen is constructed using a barn wall as one side and 60 m of fencing for the other three sides. Find the dimensions of the pen that give the greatest area.

$$
\frac{\text { BARN }}{x \left\lvert\, \frac{1}{y}\right.}
$$

$$
\begin{aligned}
& 2 x+y=60 \\
& A=x y \\
& A(x)=x(-2 x+60)
\end{aligned}
$$

$$
A(x)=-2 x^{2}+60 x
$$

$$
\text { Find where max } \alpha c u r \text { : }
$$

$$
\frac{-60}{2(-2)}=15
$$

$$
\text { Dimensions: } 15 \times 30
$$

6. Squares with sides of length x are cut from the corners of a rectangular piece of sheet metal with dimensions of 6 in and 10 in . The metal is then folded to make an open top box. Express the volume as a function of x.

$$
v(x)=x(10-2 x)(6-2 x)
$$

7. A local video store determines that it can rent 10,000 films per month if the rental price is $\$ 32$ for each film. It also estimates that for each 25 -cent reduction in price, 100 more films will be rented. What is the maximum possible income and what rental price per film gives this income?
Income $=($ Price $)($ \# of units rented)
Find Price Function:
$\begin{array}{ll}x=4 \text { units rented } \\ y=\text { price }\end{array} \quad m=\frac{-25}{100}(10,000,32)$
$y-32=\frac{-25}{100}(x-10,000) \quad$ Find max:
$I(x)=\left(\frac{-.25}{100} x+57\right) \times\left\{\begin{array}{l}\text { The max income } \\ \text { is } \$ 324,900 \\ \text { when renting } 11,400 \\ \text { films at } \$ 28.50\end{array}\right\}=\frac{-.25}{100} x^{2}+57 x\left\{\begin{array}{l}\text { pen film. }\end{array}\right\}$.
$y=\frac{-.25}{100} x+57 \quad x=\frac{-b}{2 a}=\frac{-57}{2\left(-\frac{.25}{100}\right)}=11,400 \quad y=\frac{-25}{100}(11,400)+57=\$ 28.50$

$$
(11400,324,900) I=\frac{-.25}{100}(11,400)^{2}+57(11,400)=324,900
$$

8. A point P lies on the graph of the quadratic function below. Find the quadratic function and express the area of the rectangle as a function of x.

$$
\begin{aligned}
& \text { Quadratic: } y=-x^{2}+4 \quad\left(x^{2} \text { reflected : translated up } 4\right) \\
& A=x y \\
& A(x)=x\left(-x^{2}+4\right) \\
& A(x)=-x^{3}+4 x
\end{aligned}
$$

