REVIEW WORKSHEET 5.1 THRU 5.6

1. Find the vertex by putting the equation into vertex form.
a. $y=-8 x^{2}-40 x-45$
$y-5=-8(x+5 / 2)^{2}$
b. $y=\frac{3}{4} x^{2}-6 x+7 \begin{aligned} & \\ & y+5=\frac{3}{4}(x-4)^{2}\end{aligned}$
$v(-5 / 2,5)$
$V(4,-5)$
2. Find the vertex using the "short cut" method. Also find the x-intercepts if they exist.
a. $y=-8 x^{2}-12 x-6$
b. $y=6 x^{2}+12 x+24$
$v\left(-\frac{3}{4}, \frac{-3}{2}\right)$ No x int. $x=\frac{3 \pm i \sqrt{3}}{-4}$
$(-1,18) \quad$ No x int: $-1 \pm i \sqrt{3}$
3. Solve over the set of complex numbers
a. $5 x^{2}+2 x+6=0$
d. $3 x^{2}+3 x-33=0$
b. $3 x^{2}-3 x+4=0$
e. $-2 x^{2}+8 x-19=0$
c. $9 x^{2}-9 x-1=0$
f. $3 x^{2}-3 x-4=0$
$3 a \frac{-1 \pm i \sqrt{29}}{5}$
d. $\frac{-1 \pm 3 \sqrt{5}}{2}$
b. $\frac{3 \pm i \sqrt{39}}{6}$
e. $\frac{4 \pm 2 i \sqrt{22}}{2}$
c. $\frac{3 \pm \sqrt{13}}{6}$
f. $\frac{3 \pm \sqrt{57}}{6}$

4. Solve by factoring.
a. $10 x^{2}-7=33 x$
b. $3 x^{2}-11 x-20=0$
c. $49 x^{2}=4$
c. $\pm 2 / 7$
d. $x^{2}-4 x-21=0$
e. $4 x^{2}-21 x+5=0$
f. $x^{2}=9 x$
f. 0,9
5. Perform the following operations using:
$m=3+7 i \quad n=6-2 i$
a. $m+n$
b. mn
c. $\frac{m}{n}$
6. Simplify.

$$
\begin{array}{|ll|}
\hline 5 a & 9+5 i \\
\text { b. } & 32+36 i \\
\text { c. } & \frac{1+12 i}{10} \\
\hline
\end{array}
$$

a. $\begin{aligned} & -6 \sqrt{-12} \cdot 5 \sqrt{-24} \\ & 360 \sqrt{2}\end{aligned}$
b. $i^{427}-i$
7. If $f(x)=5 x^{2}+2 x+6$, find:
a. $f(-3) 45$
b. $f(2+5 i)-95+110 i$
c. If $f(x)=8$, what is the value of x.

$$
x=\frac{-1 \pm \sqrt{11}}{5}
$$

8. Determine the indicated information about each graph. (No calculator on this one.)
a. $y=-3 x^{2}+2 x-4$
b. $y=\frac{2}{3} x^{2}-4 x+6$
opens: down
wide/ narrow/ normal: narrow (stretch)
y - intercept: $(0,-4)$
opens: up
wide/ narrow/ normal: wider (shrink)
y-intercept: $(0,6)$
9. A parabola has the following characteristics: vertex of $(2,-3)$; opens down; narrower than $y=x^{2}$.
a. Write a possible equation for the parabola in $y-k=a(x-h)^{2}$ form. $y+3=-a(x-2)^{2}$
b. Convert your answer from part a into standard form. convert to standard form by foiling

$$
\begin{aligned}
& (x-2)(x+4)=y \\
& x^{2}-2 x-8=y
\end{aligned}
$$

