DIVISION OF POLYNOMIALS

OBJECTIVES: 1) Use long division to find a quotient and remainder.
2) Use synthetic division where applicable.
3) Write an expression of the form $x^{n}-a^{n}$ as a product of two factors.

VOCABULARY

Consider 9 divided by 2 . The quotient is 4 and the remainder is 1 .

$$
2 \longdiv { \frac { 4 } { 9 } } \quad \text { Divisor } \stackrel{\text { Quotient }}{\stackrel{4}{1}}+\text { Rividend }+ \text { Remainder }
$$

Dividend
$\overline{\text { Divisor } \quad \text { Dividend }=\text { Divisor } \bullet \text { Quotient }+ \text { Remainder }}$

LONG DIVISION

1) Let $p(x)=x^{5}+32$ and $d(x)=x-3$.

Use long division to find the polynomials $q(x)$ and $R(x)$ such that $p(x)=d(x) \cdot q(x)+R(x)$.

Use long division to find the polynomials $q(x)$ and $R(x)$ such that $p(x)=d(x) \cdot q(x)+R(x)$.

3) $\frac{x^{3}-1}{x-1}$

$$
\frac{x^{3}-1}{x-1}=x^{2}+x+1
$$

$$
\begin{aligned}
& \text { 4) } \frac{2 x^{2}-7 x+8}{2 x-3} \text { coefficient needs } \\
& \text { to be } 1 \Rightarrow x-\frac{3}{2} \\
& \frac{3}{2} \left\lvert\, \begin{array}{rrr}
1 & -\frac{7}{2} & 4 \\
& \frac{3}{2} & -3
\end{array} \longleftarrow\right. \text { Divide all coefficients by } 2 \text { ! } \\
& \begin{array}{ll}
1 & -2 \\
x-2+\frac{2}{2 x-3}
\end{array} \rightarrow \frac{1}{x-\frac{3}{2}} \cdot \frac{2}{2} \\
& \frac{2 x^{2}-7 x+8}{2 x-3}=x-2+\frac{2}{2 x-3}
\end{aligned}
$$

FACTORIZATION OF $X^{N}-A^{N}$

4) Use synthetic division to divide $x^{5}-a^{5}$ by $x-a$.

$$
\begin{aligned}
& \begin{array}{r}
a \left\lvert\, \begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & -a^{5} \\
& a & a^{2} & a^{3} & a^{4} & a^{5}
\end{array}\right. \\
1
\end{array} a \\
& {\left[x^{4}+a x^{3}+a^{2} x^{2}+a^{3} x+a^{4}\right.} \\
& \left\{x^{5}-a^{5}=(x-a)\left(x^{4}+a x^{3}+a^{2} x^{2}+a^{3} x+a^{4}\right)\right\}
\end{aligned}
$$

6) Factor: $x^{4}-256$

